Copied to
clipboard

G = C2×D9⋊A4order 432 = 24·33

Direct product of C2 and D9⋊A4

direct product, metabelian, soluble, monomial

Aliases: C2×D9⋊A4, D18⋊A4, C18⋊(C2×A4), D9⋊(C2×A4), C9⋊A4⋊C22, C9⋊(C22×A4), (C3×A4).D6, (C6×A4).4S3, C6.10(S3×A4), C232(C9⋊C6), (C22×C18)⋊3C6, (C23×D9)⋊2C3, (C22×D9)⋊4C6, (C2×C9⋊A4)⋊C2, C3.1(C2×S3×A4), (C2×C18)⋊2(C2×C6), C222(C2×C9⋊C6), (C2×C6).5(S3×C6), (C22×C6).14(C3×S3), SmallGroup(432,539)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C2×D9⋊A4
C1C3C9C2×C18C9⋊A4D9⋊A4 — C2×D9⋊A4
C2×C18 — C2×D9⋊A4
C1C2

Generators and relations for C2×D9⋊A4
 G = < a,b,c,d,e,f | a2=b9=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, fbf-1=b4, cd=dc, ce=ec, fcf-1=b3c, fdf-1=de=ed, fef-1=d >

Subgroups: 976 in 121 conjugacy classes, 25 normal (19 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C23, C9, C9, C32, A4, D6, C2×C6, C2×C6, C24, D9, D9, C18, C18, C3×S3, C3×C6, C2×A4, C22×S3, C22×C6, 3- 1+2, C3.A4, D18, D18, C2×C18, C2×C18, C3×A4, S3×C6, C22×A4, S3×C23, C9⋊C6, C2×3- 1+2, C2×C3.A4, C22×D9, C22×D9, C22×C18, S3×A4, C6×A4, C9⋊A4, C2×C9⋊C6, C23×D9, C2×S3×A4, D9⋊A4, C2×C9⋊A4, C2×D9⋊A4
Quotients: C1, C2, C3, C22, S3, C6, A4, D6, C2×C6, C3×S3, C2×A4, S3×C6, C22×A4, C9⋊C6, S3×A4, C2×C9⋊C6, C2×S3×A4, D9⋊A4, C2×D9⋊A4

Smallest permutation representation of C2×D9⋊A4
On 54 points
Generators in S54
(1 17)(2 18)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(9 16)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 18)(9 17)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(27 36)(37 47)(38 46)(39 54)(40 53)(41 52)(42 51)(43 50)(44 49)(45 48)
(1 17)(2 18)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(9 16)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(1 38 23)(2 45 27)(3 43 22)(4 41 26)(5 39 21)(6 37 25)(7 44 20)(8 42 24)(9 40 19)(10 52 31)(11 50 35)(12 48 30)(13 46 34)(14 53 29)(15 51 33)(16 49 28)(17 47 32)(18 54 36)

G:=sub<Sym(54)| (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,18)(9,17)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,47)(38,46)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,48), (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,38,23)(2,45,27)(3,43,22)(4,41,26)(5,39,21)(6,37,25)(7,44,20)(8,42,24)(9,40,19)(10,52,31)(11,50,35)(12,48,30)(13,46,34)(14,53,29)(15,51,33)(16,49,28)(17,47,32)(18,54,36)>;

G:=Group( (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,18)(9,17)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,47)(38,46)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,48), (1,17)(2,18)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,38,23)(2,45,27)(3,43,22)(4,41,26)(5,39,21)(6,37,25)(7,44,20)(8,42,24)(9,40,19)(10,52,31)(11,50,35)(12,48,30)(13,46,34)(14,53,29)(15,51,33)(16,49,28)(17,47,32)(18,54,36) );

G=PermutationGroup([[(1,17),(2,18),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(9,16),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,18),(9,17),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(27,36),(37,47),(38,46),(39,54),(40,53),(41,52),(42,51),(43,50),(44,49),(45,48)], [(1,17),(2,18),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(9,16),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(1,38,23),(2,45,27),(3,43,22),(4,41,26),(5,39,21),(6,37,25),(7,44,20),(8,42,24),(9,40,19),(10,52,31),(11,50,35),(12,48,30),(13,46,34),(14,53,29),(15,51,33),(16,49,28),(17,47,32),(18,54,36)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C6A6B6C6D6E6F6G6H6I9A9B9C18A···18G18H18I
order1222222233366666666699918···181818
size113399272721212266121236363636624246···62424

32 irreducible representations

dim1111112222333666666
type++++++++++++++
imageC1C2C2C3C6C6S3D6C3×S3S3×C6A4C2×A4C2×A4C9⋊C6S3×A4C2×C9⋊C6C2×S3×A4D9⋊A4C2×D9⋊A4
kernelC2×D9⋊A4D9⋊A4C2×C9⋊A4C23×D9C22×D9C22×C18C6×A4C3×A4C22×C6C2×C6D18D9C18C23C6C22C3C2C1
# reps1212421122121111133

Matrix representation of C2×D9⋊A4 in GL6(𝔽19)

1800000
0180000
0018000
0001800
0000180
0000018
,
12170000
2140000
0021400
005700
000057
00001217
,
720000
14120000
0017500
007200
00001412
0000175
,
1800000
0180000
001000
000100
0000180
0000018
,
100000
010000
0018000
0001800
0000180
0000018
,
001000
000100
000010
000001
100000
010000

G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[12,2,0,0,0,0,17,14,0,0,0,0,0,0,2,5,0,0,0,0,14,7,0,0,0,0,0,0,5,12,0,0,0,0,7,17],[7,14,0,0,0,0,2,12,0,0,0,0,0,0,17,7,0,0,0,0,5,2,0,0,0,0,0,0,14,17,0,0,0,0,12,5],[18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0] >;

C2×D9⋊A4 in GAP, Magma, Sage, TeX

C_2\times D_9\rtimes A_4
% in TeX

G:=Group("C2xD9:A4");
// GroupNames label

G:=SmallGroup(432,539);
// by ID

G=gap.SmallGroup(432,539);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,2,-3,-3,269,123,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^9=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,f*b*f^-1=b^4,c*d=d*c,c*e=e*c,f*c*f^-1=b^3*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽