direct product, metabelian, soluble, monomial, A-group
Aliases: C2×A4×D9, C18⋊3(C2×A4), (A4×C18)⋊3C2, (C6×A4).8S3, C6.11(S3×A4), C9⋊3(C22×A4), (C3×A4).4D6, C23⋊2(C3×D9), C22⋊2(C6×D9), (C9×A4)⋊4C22, (C22×C18)⋊1C6, (C22×D9)⋊5C6, (C23×D9)⋊1C3, C3.2(C2×S3×A4), (C2×C18)⋊3(C2×C6), (C2×C6).6(S3×C6), (C22×C6).15(C3×S3), SmallGroup(432,540)
Series: Derived ►Chief ►Lower central ►Upper central
C2×C18 — C2×A4×D9 |
Generators and relations for C2×A4×D9
G = < a,b,c,d,e,f | a2=b2=c2=d3=e9=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, dbd-1=bc=cb, be=eb, bf=fb, dcd-1=b, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 976 in 125 conjugacy classes, 27 normal (21 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C23, C9, C9, C32, A4, A4, D6, C2×C6, C2×C6, C24, D9, D9, C18, C18, C3×S3, C3×C6, C2×A4, C2×A4, C22×S3, C22×C6, C3×C9, C3.A4, D18, D18, C2×C18, C2×C18, C3×A4, S3×C6, C22×A4, S3×C23, C3×D9, C3×C18, C2×C3.A4, C22×D9, C22×D9, C22×C18, S3×A4, C6×A4, C9×A4, C6×D9, C23×D9, C2×S3×A4, A4×D9, A4×C18, C2×A4×D9
Quotients: C1, C2, C3, C22, S3, C6, A4, D6, C2×C6, D9, C3×S3, C2×A4, D18, S3×C6, C22×A4, C3×D9, S3×A4, C6×D9, C2×S3×A4, A4×D9, C2×A4×D9
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(1 41 23)(2 42 24)(3 43 25)(4 44 26)(5 45 27)(6 37 19)(7 38 20)(8 39 21)(9 40 22)(10 46 28)(11 47 29)(12 48 30)(13 49 31)(14 50 32)(15 51 33)(16 52 34)(17 53 35)(18 54 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 26)(20 25)(21 24)(22 23)(28 35)(29 34)(30 33)(31 32)(37 44)(38 43)(39 42)(40 41)(46 53)(47 52)(48 51)(49 50)
G:=sub<Sym(54)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,41,23)(2,42,24)(3,43,25)(4,44,26)(5,45,27)(6,37,19)(7,38,20)(8,39,21)(9,40,22)(10,46,28)(11,47,29)(12,48,30)(13,49,31)(14,50,32)(15,51,33)(16,52,34)(17,53,35)(18,54,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,44)(38,43)(39,42)(40,41)(46,53)(47,52)(48,51)(49,50)>;
G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,41,23)(2,42,24)(3,43,25)(4,44,26)(5,45,27)(6,37,19)(7,38,20)(8,39,21)(9,40,22)(10,46,28)(11,47,29)(12,48,30)(13,49,31)(14,50,32)(15,51,33)(16,52,34)(17,53,35)(18,54,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,44)(38,43)(39,42)(40,41)(46,53)(47,52)(48,51)(49,50) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(1,41,23),(2,42,24),(3,43,25),(4,44,26),(5,45,27),(6,37,19),(7,38,20),(8,39,21),(9,40,22),(10,46,28),(11,47,29),(12,48,30),(13,49,31),(14,50,32),(15,51,33),(16,52,34),(17,53,35),(18,54,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,26),(20,25),(21,24),(22,23),(28,35),(29,34),(30,33),(31,32),(37,44),(38,43),(39,42),(40,41),(46,53),(47,52),(48,51),(49,50)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 9A | 9B | 9C | 9D | ··· | 9I | 18A | 18B | 18C | 18D | ··· | 18I | 18J | ··· | 18O |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | ··· | 9 | 18 | 18 | 18 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 3 | 3 | 9 | 9 | 27 | 27 | 2 | 4 | 4 | 8 | 8 | 2 | 4 | 4 | 6 | 6 | 8 | 8 | 36 | 36 | 36 | 36 | 2 | 2 | 2 | 8 | ··· | 8 | 2 | 2 | 2 | 6 | ··· | 6 | 8 | ··· | 8 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D6 | D9 | C3×S3 | D18 | S3×C6 | C3×D9 | C6×D9 | A4 | C2×A4 | C2×A4 | S3×A4 | C2×S3×A4 | A4×D9 | C2×A4×D9 |
kernel | C2×A4×D9 | A4×D9 | A4×C18 | C23×D9 | C22×D9 | C22×C18 | C6×A4 | C3×A4 | C2×A4 | C22×C6 | A4 | C2×C6 | C23 | C22 | D18 | D9 | C18 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 1 | 3 | 2 | 3 | 2 | 6 | 6 | 1 | 2 | 1 | 1 | 1 | 3 | 3 |
Matrix representation of C2×A4×D9 ►in GL5(𝔽19)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 18 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 |
0 | 0 | 7 | 1 | 0 |
0 | 0 | 8 | 5 | 18 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 18 | 0 |
0 | 0 | 12 | 0 | 18 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 |
0 | 0 | 0 | 7 | 12 |
0 | 0 | 0 | 0 | 11 |
5 | 7 | 0 | 0 | 0 |
12 | 17 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
5 | 7 | 0 | 0 | 0 |
2 | 14 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,1,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,18,7,8,0,0,0,1,5,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,1,12,12,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,3,7,0,0,0,0,12,11],[5,12,0,0,0,7,17,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,2,0,0,0,7,14,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
C2×A4×D9 in GAP, Magma, Sage, TeX
C_2\times A_4\times D_9
% in TeX
G:=Group("C2xA4xD9");
// GroupNames label
G:=SmallGroup(432,540);
// by ID
G=gap.SmallGroup(432,540);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,2,-3,-3,269,123,10085,292,14118]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^3=e^9=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,d*c*d^-1=b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations