Copied to
clipboard

G = C2×A4×D9order 432 = 24·33

Direct product of C2, A4 and D9

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×A4×D9, C183(C2×A4), (A4×C18)⋊3C2, (C6×A4).8S3, C6.11(S3×A4), C93(C22×A4), (C3×A4).4D6, C232(C3×D9), C222(C6×D9), (C9×A4)⋊4C22, (C22×C18)⋊1C6, (C22×D9)⋊5C6, (C23×D9)⋊1C3, C3.2(C2×S3×A4), (C2×C18)⋊3(C2×C6), (C2×C6).6(S3×C6), (C22×C6).15(C3×S3), SmallGroup(432,540)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C2×A4×D9
C1C3C9C2×C18C9×A4A4×D9 — C2×A4×D9
C2×C18 — C2×A4×D9
C1C2

Generators and relations for C2×A4×D9
 G = < a,b,c,d,e,f | a2=b2=c2=d3=e9=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, dbd-1=bc=cb, be=eb, bf=fb, dcd-1=b, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 976 in 125 conjugacy classes, 27 normal (21 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C23, C9, C9, C32, A4, A4, D6, C2×C6, C2×C6, C24, D9, D9, C18, C18, C3×S3, C3×C6, C2×A4, C2×A4, C22×S3, C22×C6, C3×C9, C3.A4, D18, D18, C2×C18, C2×C18, C3×A4, S3×C6, C22×A4, S3×C23, C3×D9, C3×C18, C2×C3.A4, C22×D9, C22×D9, C22×C18, S3×A4, C6×A4, C9×A4, C6×D9, C23×D9, C2×S3×A4, A4×D9, A4×C18, C2×A4×D9
Quotients: C1, C2, C3, C22, S3, C6, A4, D6, C2×C6, D9, C3×S3, C2×A4, D18, S3×C6, C22×A4, C3×D9, S3×A4, C6×D9, C2×S3×A4, A4×D9, C2×A4×D9

Smallest permutation representation of C2×A4×D9
On 54 points
Generators in S54
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)
(1 41 23)(2 42 24)(3 43 25)(4 44 26)(5 45 27)(6 37 19)(7 38 20)(8 39 21)(9 40 22)(10 46 28)(11 47 29)(12 48 30)(13 49 31)(14 50 32)(15 51 33)(16 52 34)(17 53 35)(18 54 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 26)(20 25)(21 24)(22 23)(28 35)(29 34)(30 33)(31 32)(37 44)(38 43)(39 42)(40 41)(46 53)(47 52)(48 51)(49 50)

G:=sub<Sym(54)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,41,23)(2,42,24)(3,43,25)(4,44,26)(5,45,27)(6,37,19)(7,38,20)(8,39,21)(9,40,22)(10,46,28)(11,47,29)(12,48,30)(13,49,31)(14,50,32)(15,51,33)(16,52,34)(17,53,35)(18,54,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,44)(38,43)(39,42)(40,41)(46,53)(47,52)(48,51)(49,50)>;

G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54), (1,41,23)(2,42,24)(3,43,25)(4,44,26)(5,45,27)(6,37,19)(7,38,20)(8,39,21)(9,40,22)(10,46,28)(11,47,29)(12,48,30)(13,49,31)(14,50,32)(15,51,33)(16,52,34)(17,53,35)(18,54,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,44)(38,43)(39,42)(40,41)(46,53)(47,52)(48,51)(49,50) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)], [(1,41,23),(2,42,24),(3,43,25),(4,44,26),(5,45,27),(6,37,19),(7,38,20),(8,39,21),(9,40,22),(10,46,28),(11,47,29),(12,48,30),(13,49,31),(14,50,32),(15,51,33),(16,52,34),(17,53,35),(18,54,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,26),(20,25),(21,24),(22,23),(28,35),(29,34),(30,33),(31,32),(37,44),(38,43),(39,42),(40,41),(46,53),(47,52),(48,51),(49,50)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E6A6B6C6D6E6F6G6H6I6J6K9A9B9C9D···9I18A18B18C18D···18I18J···18O
order1222222233333666666666669999···918181818···1818···18
size1133992727244882446688363636362228···82226···68···8

48 irreducible representations

dim111111222222223336666
type++++++++++++++
imageC1C2C2C3C6C6S3D6D9C3×S3D18S3×C6C3×D9C6×D9A4C2×A4C2×A4S3×A4C2×S3×A4A4×D9C2×A4×D9
kernelC2×A4×D9A4×D9A4×C18C23×D9C22×D9C22×C18C6×A4C3×A4C2×A4C22×C6A4C2×C6C23C22D18D9C18C6C3C2C1
# reps121242113232661211133

Matrix representation of C2×A4×D9 in GL5(𝔽19)

10000
01000
001800
000180
000018
,
10000
01000
001800
00710
008518
,
10000
01000
00100
0012180
0012018
,
10000
01000
00130
000712
000011
,
57000
1217000
00100
00010
00001
,
57000
214000
00100
00010
00001

G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,1,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,18,7,8,0,0,0,1,5,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,1,12,12,0,0,0,18,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,3,7,0,0,0,0,12,11],[5,12,0,0,0,7,17,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,2,0,0,0,7,14,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

C2×A4×D9 in GAP, Magma, Sage, TeX

C_2\times A_4\times D_9
% in TeX

G:=Group("C2xA4xD9");
// GroupNames label

G:=SmallGroup(432,540);
// by ID

G=gap.SmallGroup(432,540);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,2,-3,-3,269,123,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^3=e^9=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,d*c*d^-1=b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽