extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).(C3×Q8) = C3×C2.PSU3(𝔽2) | φ: C3×Q8/C3 → Q8 ⊆ Aut C3×C6 | 48 | 8 | (C3xC6).(C3xQ8) | 432,591 |
(C3×C6).2(C3×Q8) = C62.19D6 | φ: C3×Q8/C4 → C6 ⊆ Aut C3×C6 | 144 | | (C3xC6).2(C3xQ8) | 432,139 |
(C3×C6).3(C3×Q8) = C62.20D6 | φ: C3×Q8/C4 → C6 ⊆ Aut C3×C6 | 144 | | (C3xC6).3(C3xQ8) | 432,140 |
(C3×C6).4(C3×Q8) = C3×Dic3⋊Dic3 | φ: C3×Q8/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).4(C3xQ8) | 432,428 |
(C3×C6).5(C3×Q8) = C3×C62.C22 | φ: C3×Q8/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).5(C3xQ8) | 432,429 |
(C3×C6).6(C3×Q8) = C4⋊C4×He3 | φ: C3×Q8/Q8 → C3 ⊆ Aut C3×C6 | 144 | | (C3xC6).6(C3xQ8) | 432,207 |
(C3×C6).7(C3×Q8) = C4⋊C4×3- 1+2 | φ: C3×Q8/Q8 → C3 ⊆ Aut C3×C6 | 144 | | (C3xC6).7(C3xQ8) | 432,208 |
(C3×C6).8(C3×Q8) = C2×Q8×3- 1+2 | φ: C3×Q8/Q8 → C3 ⊆ Aut C3×C6 | 144 | | (C3xC6).8(C3xQ8) | 432,408 |
(C3×C6).9(C3×Q8) = C9×Dic3⋊C4 | φ: C3×Q8/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).9(C3xQ8) | 432,132 |
(C3×C6).10(C3×Q8) = C9×C4⋊Dic3 | φ: C3×Q8/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).10(C3xQ8) | 432,133 |
(C3×C6).11(C3×Q8) = C18×Dic6 | φ: C3×Q8/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).11(C3xQ8) | 432,341 |
(C3×C6).12(C3×Q8) = C32×Dic3⋊C4 | φ: C3×Q8/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).12(C3xQ8) | 432,472 |
(C3×C6).13(C3×Q8) = C32×C4⋊Dic3 | φ: C3×Q8/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).13(C3xQ8) | 432,473 |
(C3×C6).14(C3×Q8) = C3×C6.Dic6 | φ: C3×Q8/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).14(C3xQ8) | 432,488 |
(C3×C6).15(C3×Q8) = C3×C12⋊Dic3 | φ: C3×Q8/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).15(C3xQ8) | 432,489 |
(C3×C6).16(C3×Q8) = C4⋊C4×C3×C9 | central extension (φ=1) | 432 | | (C3xC6).16(C3xQ8) | 432,206 |
(C3×C6).17(C3×Q8) = Q8×C3×C18 | central extension (φ=1) | 432 | | (C3xC6).17(C3xQ8) | 432,406 |
(C3×C6).18(C3×Q8) = C4⋊C4×C33 | central extension (φ=1) | 432 | | (C3xC6).18(C3xQ8) | 432,514 |