Extensions 1→N→G→Q→1 with N=C9 and Q=C3×M4(2)

Direct product G=N×Q with N=C9 and Q=C3×M4(2)
dρLabelID
M4(2)×C3×C9216M4(2)xC3xC9432,212

Semidirect products G=N:Q with N=C9 and Q=C3×M4(2)
extensionφ:Q→Aut NdρLabelID
C91(C3×M4(2)) = C72⋊C6φ: C3×M4(2)/C8C6 ⊆ Aut C9726C9:1(C3xM4(2))432,121
C92(C3×M4(2)) = C36.C12φ: C3×M4(2)/C2×C4C6 ⊆ Aut C9726C9:2(C3xM4(2))432,143
C93(C3×M4(2)) = M4(2)×3- 1+2φ: C3×M4(2)/M4(2)C3 ⊆ Aut C9726C9:3(C3xM4(2))432,214
C94(C3×M4(2)) = C3×C8⋊D9φ: C3×M4(2)/C24C2 ⊆ Aut C91442C9:4(C3xM4(2))432,106
C95(C3×M4(2)) = C3×C4.Dic9φ: C3×M4(2)/C2×C12C2 ⊆ Aut C9722C9:5(C3xM4(2))432,125

Non-split extensions G=N.Q with N=C9 and Q=C3×M4(2)
extensionφ:Q→Aut NdρLabelID
C9.(C3×M4(2)) = M4(2)×C27central extension (φ=1)2162C9.(C3xM4(2))432,24

׿
×
𝔽