# Extensions 1→N→G→Q→1 with N=C4 and Q=S3×C18

Direct product G=N×Q with N=C4 and Q=S3×C18
dρLabelID
S3×C2×C36144S3xC2xC36432,345

Semidirect products G=N:Q with N=C4 and Q=S3×C18
extensionφ:Q→Aut NdρLabelID
C41(S3×C18) = S3×D4×C9φ: S3×C18/S3×C9C2 ⊆ Aut C4724C4:1(S3xC18)432,358
C42(S3×C18) = C18×D12φ: S3×C18/C3×C18C2 ⊆ Aut C4144C4:2(S3xC18)432,346

Non-split extensions G=N.Q with N=C4 and Q=S3×C18
extensionφ:Q→Aut NdρLabelID
C4.1(S3×C18) = C9×D4⋊S3φ: S3×C18/S3×C9C2 ⊆ Aut C4724C4.1(S3xC18)432,150
C4.2(S3×C18) = C9×D4.S3φ: S3×C18/S3×C9C2 ⊆ Aut C4724C4.2(S3xC18)432,151
C4.3(S3×C18) = C9×Q82S3φ: S3×C18/S3×C9C2 ⊆ Aut C41444C4.3(S3xC18)432,158
C4.4(S3×C18) = C9×C3⋊Q16φ: S3×C18/S3×C9C2 ⊆ Aut C41444C4.4(S3xC18)432,159
C4.5(S3×C18) = C9×D42S3φ: S3×C18/S3×C9C2 ⊆ Aut C4724C4.5(S3xC18)432,359
C4.6(S3×C18) = S3×Q8×C9φ: S3×C18/S3×C9C2 ⊆ Aut C41444C4.6(S3xC18)432,366
C4.7(S3×C18) = C9×Q83S3φ: S3×C18/S3×C9C2 ⊆ Aut C41444C4.7(S3xC18)432,367
C4.8(S3×C18) = C9×C24⋊C2φ: S3×C18/C3×C18C2 ⊆ Aut C41442C4.8(S3xC18)432,111
C4.9(S3×C18) = C9×D24φ: S3×C18/C3×C18C2 ⊆ Aut C41442C4.9(S3xC18)432,112
C4.10(S3×C18) = C9×Dic12φ: S3×C18/C3×C18C2 ⊆ Aut C41442C4.10(S3xC18)432,113
C4.11(S3×C18) = C18×Dic6φ: S3×C18/C3×C18C2 ⊆ Aut C4144C4.11(S3xC18)432,341
C4.12(S3×C18) = S3×C72central extension (φ=1)1442C4.12(S3xC18)432,109
C4.13(S3×C18) = C9×C8⋊S3central extension (φ=1)1442C4.13(S3xC18)432,110
C4.14(S3×C18) = C18×C3⋊C8central extension (φ=1)144C4.14(S3xC18)432,126
C4.15(S3×C18) = C9×C4.Dic3central extension (φ=1)722C4.15(S3xC18)432,127
C4.16(S3×C18) = C9×C4○D12central extension (φ=1)722C4.16(S3xC18)432,347

׿
×
𝔽