Extensions 1→N→G→Q→1 with N=C12⋊S3 and Q=C6

Direct product G=N×Q with N=C12⋊S3 and Q=C6
dρLabelID
C6×C12⋊S3144C6xC12:S3432,712

Semidirect products G=N:Q with N=C12⋊S3 and Q=C6
extensionφ:Q→Out NdρLabelID
C12⋊S31C6 = He34D8φ: C6/C1C6 ⊆ Out C12⋊S3726+C12:S3:1C6432,118
C12⋊S32C6 = He36D8φ: C6/C1C6 ⊆ Out C12⋊S37212+C12:S3:2C6432,153
C12⋊S33C6 = D4×C32⋊C6φ: C6/C1C6 ⊆ Out C12⋊S33612+C12:S3:3C6432,360
C12⋊S34C6 = (Q8×He3)⋊C2φ: C6/C1C6 ⊆ Out C12⋊S37212+C12:S3:4C6432,369
C12⋊S35C6 = C2×He34D4φ: C6/C2C3 ⊆ Out C12⋊S372C12:S3:5C6432,350
C12⋊S36C6 = C62.36D6φ: C6/C2C3 ⊆ Out C12⋊S3726C12:S3:6C6432,351
C12⋊S37C6 = C3×C325D8φ: C6/C3C2 ⊆ Out C12⋊S3144C12:S3:7C6432,483
C12⋊S38C6 = C3×C3⋊D24φ: C6/C3C2 ⊆ Out C12⋊S3484C12:S3:8C6432,419
C12⋊S39C6 = C3×C327D8φ: C6/C3C2 ⊆ Out C12⋊S372C12:S3:9C6432,491
C12⋊S310C6 = C3×D6.6D6φ: C6/C3C2 ⊆ Out C12⋊S3484C12:S3:10C6432,647
C12⋊S311C6 = C3×S3×D12φ: C6/C3C2 ⊆ Out C12⋊S3484C12:S3:11C6432,649
C12⋊S312C6 = C3×D4×C3⋊S3φ: C6/C3C2 ⊆ Out C12⋊S372C12:S3:12C6432,714
C12⋊S313C6 = C3×C12.26D6φ: C6/C3C2 ⊆ Out C12⋊S3144C12:S3:13C6432,717
C12⋊S314C6 = C3×C12.59D6φ: trivial image72C12:S3:14C6432,713

Non-split extensions G=N.Q with N=C12⋊S3 and Q=C6
extensionφ:Q→Out NdρLabelID
C12⋊S3.1C6 = He36SD16φ: C6/C1C6 ⊆ Out C12⋊S3726C12:S3.1C6432,117
C12⋊S3.2C6 = He310SD16φ: C6/C1C6 ⊆ Out C12⋊S37212+C12:S3.2C6432,161
C12⋊S3.3C6 = C3×C242S3φ: C6/C3C2 ⊆ Out C12⋊S3144C12:S3.3C6432,482
C12⋊S3.4C6 = C3×C325SD16φ: C6/C3C2 ⊆ Out C12⋊S3484C12:S3.4C6432,422
C12⋊S3.5C6 = C3×C3211SD16φ: C6/C3C2 ⊆ Out C12⋊S3144C12:S3.5C6432,493

׿
×
𝔽