Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C3:C8

Direct product G=NxQ with N=C3xC6 and Q=C3:C8
dρLabelID
C3xC6xC3:C8144C3xC6xC3:C8432,469

Semidirect products G=N:Q with N=C3xC6 and Q=C3:C8
extensionφ:Q→Aut NdρLabelID
(C3xC6):(C3:C8) = C2xC3:F9φ: C3:C8/C3C8 ⊆ Aut C3xC6488(C3xC6):(C3:C8)432,752
(C3xC6):2(C3:C8) = C2xHe3:3C8φ: C3:C8/C4S3 ⊆ Aut C3xC6144(C3xC6):2(C3:C8)432,136
(C3xC6):3(C3:C8) = C2xHe3:4C8φ: C3:C8/C4S3 ⊆ Aut C3xC6144(C3xC6):3(C3:C8)432,184
(C3xC6):4(C3:C8) = C2xC33:4C8φ: C3:C8/C6C4 ⊆ Aut C3xC648(C3xC6):4(C3:C8)432,639
(C3xC6):5(C3:C8) = C6xC32:4C8φ: C3:C8/C12C2 ⊆ Aut C3xC6144(C3xC6):5(C3:C8)432,485
(C3xC6):6(C3:C8) = C2xC33:7C8φ: C3:C8/C12C2 ⊆ Aut C3xC6432(C3xC6):6(C3:C8)432,501

Non-split extensions G=N.Q with N=C3xC6 and Q=C3:C8
extensionφ:Q→Aut NdρLabelID
(C3xC6).(C3:C8) = C6.F9φ: C3:C8/C3C8 ⊆ Aut C3xC6488(C3xC6).(C3:C8)432,566
(C3xC6).2(C3:C8) = He3:3C16φ: C3:C8/C4S3 ⊆ Aut C3xC61446(C3xC6).2(C3:C8)432,30
(C3xC6).3(C3:C8) = C9:C48φ: C3:C8/C4S3 ⊆ Aut C3xC61446(C3xC6).3(C3:C8)432,31
(C3xC6).4(C3:C8) = He3:4C16φ: C3:C8/C4S3 ⊆ Aut C3xC61443(C3xC6).4(C3:C8)432,33
(C3xC6).5(C3:C8) = C2xC9:C24φ: C3:C8/C4S3 ⊆ Aut C3xC6144(C3xC6).5(C3:C8)432,142
(C3xC6).6(C3:C8) = C33:4C16φ: C3:C8/C6C4 ⊆ Aut C3xC6484(C3xC6).6(C3:C8)432,413
(C3xC6).7(C3:C8) = C3xC9:C16φ: C3:C8/C12C2 ⊆ Aut C3xC61442(C3xC6).7(C3:C8)432,28
(C3xC6).8(C3:C8) = C72.S3φ: C3:C8/C12C2 ⊆ Aut C3xC6432(C3xC6).8(C3:C8)432,32
(C3xC6).9(C3:C8) = C6xC9:C8φ: C3:C8/C12C2 ⊆ Aut C3xC6144(C3xC6).9(C3:C8)432,124
(C3xC6).10(C3:C8) = C2xC36.S3φ: C3:C8/C12C2 ⊆ Aut C3xC6432(C3xC6).10(C3:C8)432,178
(C3xC6).11(C3:C8) = C3xC24.S3φ: C3:C8/C12C2 ⊆ Aut C3xC6144(C3xC6).11(C3:C8)432,230
(C3xC6).12(C3:C8) = C33:7C16φ: C3:C8/C12C2 ⊆ Aut C3xC6432(C3xC6).12(C3:C8)432,231
(C3xC6).13(C3:C8) = C32xC3:C16central extension (φ=1)144(C3xC6).13(C3:C8)432,229

׿
x
:
Z
F
o
wr
Q
<