extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).(C3⋊C8) = C6.F9 | φ: C3⋊C8/C3 → C8 ⊆ Aut C3×C6 | 48 | 8 | (C3xC6).(C3:C8) | 432,566 |
(C3×C6).2(C3⋊C8) = He3⋊3C16 | φ: C3⋊C8/C4 → S3 ⊆ Aut C3×C6 | 144 | 6 | (C3xC6).2(C3:C8) | 432,30 |
(C3×C6).3(C3⋊C8) = C9⋊C48 | φ: C3⋊C8/C4 → S3 ⊆ Aut C3×C6 | 144 | 6 | (C3xC6).3(C3:C8) | 432,31 |
(C3×C6).4(C3⋊C8) = He3⋊4C16 | φ: C3⋊C8/C4 → S3 ⊆ Aut C3×C6 | 144 | 3 | (C3xC6).4(C3:C8) | 432,33 |
(C3×C6).5(C3⋊C8) = C2×C9⋊C24 | φ: C3⋊C8/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).5(C3:C8) | 432,142 |
(C3×C6).6(C3⋊C8) = C33⋊4C16 | φ: C3⋊C8/C6 → C4 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).6(C3:C8) | 432,413 |
(C3×C6).7(C3⋊C8) = C3×C9⋊C16 | φ: C3⋊C8/C12 → C2 ⊆ Aut C3×C6 | 144 | 2 | (C3xC6).7(C3:C8) | 432,28 |
(C3×C6).8(C3⋊C8) = C72.S3 | φ: C3⋊C8/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).8(C3:C8) | 432,32 |
(C3×C6).9(C3⋊C8) = C6×C9⋊C8 | φ: C3⋊C8/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).9(C3:C8) | 432,124 |
(C3×C6).10(C3⋊C8) = C2×C36.S3 | φ: C3⋊C8/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).10(C3:C8) | 432,178 |
(C3×C6).11(C3⋊C8) = C3×C24.S3 | φ: C3⋊C8/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).11(C3:C8) | 432,230 |
(C3×C6).12(C3⋊C8) = C33⋊7C16 | φ: C3⋊C8/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).12(C3:C8) | 432,231 |
(C3×C6).13(C3⋊C8) = C32×C3⋊C16 | central extension (φ=1) | 144 | | (C3xC6).13(C3:C8) | 432,229 |