Extensions 1→N→G→Q→1 with N=C12 and Q=C3xDic3

Direct product G=NxQ with N=C12 and Q=C3xDic3
dρLabelID
Dic3xC3xC12144Dic3xC3xC12432,471

Semidirect products G=N:Q with N=C12 and Q=C3xDic3
extensionφ:Q→Aut NdρLabelID
C12:1(C3xDic3) = C3xC12:Dic3φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12:1(C3xDic3)432,489
C12:2(C3xDic3) = C12xC3:Dic3φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12:2(C3xDic3)432,487
C12:3(C3xDic3) = C32xC4:Dic3φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12:3(C3xDic3)432,473

Non-split extensions G=N.Q with N=C12 and Q=C3xDic3
extensionφ:Q→Aut NdρLabelID
C12.1(C3xDic3) = C3xC4.Dic9φ: C3xDic3/C3xC6C2 ⊆ Aut C12722C12.1(C3xDic3)432,125
C12.2(C3xDic3) = C3xC4:Dic9φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.2(C3xDic3)432,130
C12.3(C3xDic3) = He3:7M4(2)φ: C3xDic3/C3xC6C2 ⊆ Aut C12726C12.3(C3xDic3)432,137
C12.4(C3xDic3) = C62.20D6φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.4(C3xDic3)432,140
C12.5(C3xDic3) = C36.C12φ: C3xDic3/C3xC6C2 ⊆ Aut C12726C12.5(C3xDic3)432,143
C12.6(C3xDic3) = C36:C12φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.6(C3xDic3)432,146
C12.7(C3xDic3) = C3xC12.58D6φ: C3xDic3/C3xC6C2 ⊆ Aut C1272C12.7(C3xDic3)432,486
C12.8(C3xDic3) = C3xC9:C16φ: C3xDic3/C3xC6C2 ⊆ Aut C121442C12.8(C3xDic3)432,28
C12.9(C3xDic3) = He3:3C16φ: C3xDic3/C3xC6C2 ⊆ Aut C121446C12.9(C3xDic3)432,30
C12.10(C3xDic3) = C9:C48φ: C3xDic3/C3xC6C2 ⊆ Aut C121446C12.10(C3xDic3)432,31
C12.11(C3xDic3) = C6xC9:C8φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.11(C3xDic3)432,124
C12.12(C3xDic3) = C12xDic9φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.12(C3xDic3)432,128
C12.13(C3xDic3) = C2xHe3:3C8φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.13(C3xDic3)432,136
C12.14(C3xDic3) = C4xC32:C12φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.14(C3xDic3)432,138
C12.15(C3xDic3) = C2xC9:C24φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.15(C3xDic3)432,142
C12.16(C3xDic3) = C4xC9:C12φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.16(C3xDic3)432,144
C12.17(C3xDic3) = C3xC24.S3φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.17(C3xDic3)432,230
C12.18(C3xDic3) = C6xC32:4C8φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.18(C3xDic3)432,485
C12.19(C3xDic3) = C9xC4.Dic3φ: C3xDic3/C3xC6C2 ⊆ Aut C12722C12.19(C3xDic3)432,127
C12.20(C3xDic3) = C9xC4:Dic3φ: C3xDic3/C3xC6C2 ⊆ Aut C12144C12.20(C3xDic3)432,133
C12.21(C3xDic3) = C32xC4.Dic3φ: C3xDic3/C3xC6C2 ⊆ Aut C1272C12.21(C3xDic3)432,470
C12.22(C3xDic3) = C9xC3:C16central extension (φ=1)1442C12.22(C3xDic3)432,29
C12.23(C3xDic3) = C18xC3:C8central extension (φ=1)144C12.23(C3xDic3)432,126
C12.24(C3xDic3) = Dic3xC36central extension (φ=1)144C12.24(C3xDic3)432,131
C12.25(C3xDic3) = C32xC3:C16central extension (φ=1)144C12.25(C3xDic3)432,229
C12.26(C3xDic3) = C3xC6xC3:C8central extension (φ=1)144C12.26(C3xDic3)432,469

׿
x
:
Z
F
o
wr
Q
<