# Extensions 1→N→G→Q→1 with N=C12 and Q=C3×Dic3

Direct product G=N×Q with N=C12 and Q=C3×Dic3
dρLabelID
Dic3×C3×C12144Dic3xC3xC12432,471

Semidirect products G=N:Q with N=C12 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C121(C3×Dic3) = C3×C12⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12:1(C3xDic3)432,489
C122(C3×Dic3) = C12×C3⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12:2(C3xDic3)432,487
C123(C3×Dic3) = C32×C4⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12:3(C3xDic3)432,473

Non-split extensions G=N.Q with N=C12 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C12.1(C3×Dic3) = C3×C4.Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C12722C12.1(C3xDic3)432,125
C12.2(C3×Dic3) = C3×C4⋊Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.2(C3xDic3)432,130
C12.3(C3×Dic3) = He37M4(2)φ: C3×Dic3/C3×C6C2 ⊆ Aut C12726C12.3(C3xDic3)432,137
C12.4(C3×Dic3) = C62.20D6φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.4(C3xDic3)432,140
C12.5(C3×Dic3) = C36.C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C12726C12.5(C3xDic3)432,143
C12.6(C3×Dic3) = C36⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.6(C3xDic3)432,146
C12.7(C3×Dic3) = C3×C12.58D6φ: C3×Dic3/C3×C6C2 ⊆ Aut C1272C12.7(C3xDic3)432,486
C12.8(C3×Dic3) = C3×C9⋊C16φ: C3×Dic3/C3×C6C2 ⊆ Aut C121442C12.8(C3xDic3)432,28
C12.9(C3×Dic3) = He33C16φ: C3×Dic3/C3×C6C2 ⊆ Aut C121446C12.9(C3xDic3)432,30
C12.10(C3×Dic3) = C9⋊C48φ: C3×Dic3/C3×C6C2 ⊆ Aut C121446C12.10(C3xDic3)432,31
C12.11(C3×Dic3) = C6×C9⋊C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.11(C3xDic3)432,124
C12.12(C3×Dic3) = C12×Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.12(C3xDic3)432,128
C12.13(C3×Dic3) = C2×He33C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.13(C3xDic3)432,136
C12.14(C3×Dic3) = C4×C32⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.14(C3xDic3)432,138
C12.15(C3×Dic3) = C2×C9⋊C24φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.15(C3xDic3)432,142
C12.16(C3×Dic3) = C4×C9⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.16(C3xDic3)432,144
C12.17(C3×Dic3) = C3×C24.S3φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.17(C3xDic3)432,230
C12.18(C3×Dic3) = C6×C324C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.18(C3xDic3)432,485
C12.19(C3×Dic3) = C9×C4.Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C12722C12.19(C3xDic3)432,127
C12.20(C3×Dic3) = C9×C4⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C12144C12.20(C3xDic3)432,133
C12.21(C3×Dic3) = C32×C4.Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C1272C12.21(C3xDic3)432,470
C12.22(C3×Dic3) = C9×C3⋊C16central extension (φ=1)1442C12.22(C3xDic3)432,29
C12.23(C3×Dic3) = C18×C3⋊C8central extension (φ=1)144C12.23(C3xDic3)432,126
C12.24(C3×Dic3) = Dic3×C36central extension (φ=1)144C12.24(C3xDic3)432,131
C12.25(C3×Dic3) = C32×C3⋊C16central extension (φ=1)144C12.25(C3xDic3)432,229
C12.26(C3×Dic3) = C3×C6×C3⋊C8central extension (φ=1)144C12.26(C3xDic3)432,469

׿
×
𝔽