extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3xDic3) = C3xC4.Dic9 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 72 | 2 | C12.1(C3xDic3) | 432,125 |
C12.2(C3xDic3) = C3xC4:Dic9 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.2(C3xDic3) | 432,130 |
C12.3(C3xDic3) = He3:7M4(2) | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 72 | 6 | C12.3(C3xDic3) | 432,137 |
C12.4(C3xDic3) = C62.20D6 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.4(C3xDic3) | 432,140 |
C12.5(C3xDic3) = C36.C12 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 72 | 6 | C12.5(C3xDic3) | 432,143 |
C12.6(C3xDic3) = C36:C12 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.6(C3xDic3) | 432,146 |
C12.7(C3xDic3) = C3xC12.58D6 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 72 | | C12.7(C3xDic3) | 432,486 |
C12.8(C3xDic3) = C3xC9:C16 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | 2 | C12.8(C3xDic3) | 432,28 |
C12.9(C3xDic3) = He3:3C16 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | 6 | C12.9(C3xDic3) | 432,30 |
C12.10(C3xDic3) = C9:C48 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | 6 | C12.10(C3xDic3) | 432,31 |
C12.11(C3xDic3) = C6xC9:C8 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.11(C3xDic3) | 432,124 |
C12.12(C3xDic3) = C12xDic9 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.12(C3xDic3) | 432,128 |
C12.13(C3xDic3) = C2xHe3:3C8 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.13(C3xDic3) | 432,136 |
C12.14(C3xDic3) = C4xC32:C12 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.14(C3xDic3) | 432,138 |
C12.15(C3xDic3) = C2xC9:C24 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.15(C3xDic3) | 432,142 |
C12.16(C3xDic3) = C4xC9:C12 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.16(C3xDic3) | 432,144 |
C12.17(C3xDic3) = C3xC24.S3 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.17(C3xDic3) | 432,230 |
C12.18(C3xDic3) = C6xC32:4C8 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.18(C3xDic3) | 432,485 |
C12.19(C3xDic3) = C9xC4.Dic3 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 72 | 2 | C12.19(C3xDic3) | 432,127 |
C12.20(C3xDic3) = C9xC4:Dic3 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 144 | | C12.20(C3xDic3) | 432,133 |
C12.21(C3xDic3) = C32xC4.Dic3 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C12 | 72 | | C12.21(C3xDic3) | 432,470 |
C12.22(C3xDic3) = C9xC3:C16 | central extension (φ=1) | 144 | 2 | C12.22(C3xDic3) | 432,29 |
C12.23(C3xDic3) = C18xC3:C8 | central extension (φ=1) | 144 | | C12.23(C3xDic3) | 432,126 |
C12.24(C3xDic3) = Dic3xC36 | central extension (φ=1) | 144 | | C12.24(C3xDic3) | 432,131 |
C12.25(C3xDic3) = C32xC3:C16 | central extension (φ=1) | 144 | | C12.25(C3xDic3) | 432,229 |
C12.26(C3xDic3) = C3xC6xC3:C8 | central extension (φ=1) | 144 | | C12.26(C3xDic3) | 432,469 |