Extensions 1→N→G→Q→1 with N=D6 and Q=D18

Direct product G=NxQ with N=D6 and Q=D18
dρLabelID
C22xS3xD972C2^2xS3xD9432,544

Semidirect products G=N:Q with N=D6 and Q=D18
extensionφ:Q→Out NdρLabelID
D6:1D18 = D9xD12φ: D18/D9C2 ⊆ Out D6724+D6:1D18432,292
D6:2D18 = C36:D6φ: D18/D9C2 ⊆ Out D6724D6:2D18432,293
D6:3D18 = D9xC3:D4φ: D18/D9C2 ⊆ Out D6724D6:3D18432,314
D6:4D18 = D18:D6φ: D18/D9C2 ⊆ Out D6364+D6:4D18432,315
D6:5D18 = C2xD6:D9φ: D18/C18C2 ⊆ Out D6144D6:5D18432,311
D6:6D18 = C2xC9:D12φ: D18/C18C2 ⊆ Out D672D6:6D18432,312
D6:7D18 = S3xC9:D4φ: D18/C18C2 ⊆ Out D6724D6:7D18432,313

Non-split extensions G=N.Q with N=D6 and Q=D18
extensionφ:Q→Out NdρLabelID
D6.1D18 = D12:5D9φ: D18/D9C2 ⊆ Out D61444-D6.1D18432,285
D6.2D18 = D12:D9φ: D18/D9C2 ⊆ Out D6724D6.2D18432,286
D6.3D18 = Dic3.D18φ: D18/D9C2 ⊆ Out D6724D6.3D18432,309
D6.4D18 = D18.4D6φ: D18/D9C2 ⊆ Out D6724-D6.4D18432,310
D6.5D18 = D6.D18φ: D18/C18C2 ⊆ Out D6724D6.5D18432,287
D6.6D18 = D36:5S3φ: D18/C18C2 ⊆ Out D61444-D6.6D18432,288
D6.7D18 = Dic9.D6φ: D18/C18C2 ⊆ Out D6724+D6.7D18432,289
D6.8D18 = S3xDic18φ: trivial image1444-D6.8D18432,284
D6.9D18 = C4xS3xD9φ: trivial image724D6.9D18432,290
D6.10D18 = S3xD36φ: trivial image724+D6.10D18432,291
D6.11D18 = C2xS3xDic9φ: trivial image144D6.11D18432,308

׿
x
:
Z
F
o
wr
Q
<