# Extensions 1→N→G→Q→1 with N=D6 and Q=D18

Direct product G=N×Q with N=D6 and Q=D18
dρLabelID
C22×S3×D972C2^2xS3xD9432,544

Semidirect products G=N:Q with N=D6 and Q=D18
extensionφ:Q→Out NdρLabelID
D61D18 = D9×D12φ: D18/D9C2 ⊆ Out D6724+D6:1D18432,292
D62D18 = C36⋊D6φ: D18/D9C2 ⊆ Out D6724D6:2D18432,293
D63D18 = D9×C3⋊D4φ: D18/D9C2 ⊆ Out D6724D6:3D18432,314
D64D18 = D18⋊D6φ: D18/D9C2 ⊆ Out D6364+D6:4D18432,315
D65D18 = C2×D6⋊D9φ: D18/C18C2 ⊆ Out D6144D6:5D18432,311
D66D18 = C2×C9⋊D12φ: D18/C18C2 ⊆ Out D672D6:6D18432,312
D67D18 = S3×C9⋊D4φ: D18/C18C2 ⊆ Out D6724D6:7D18432,313

Non-split extensions G=N.Q with N=D6 and Q=D18
extensionφ:Q→Out NdρLabelID
D6.1D18 = D125D9φ: D18/D9C2 ⊆ Out D61444-D6.1D18432,285
D6.2D18 = D12⋊D9φ: D18/D9C2 ⊆ Out D6724D6.2D18432,286
D6.3D18 = Dic3.D18φ: D18/D9C2 ⊆ Out D6724D6.3D18432,309
D6.4D18 = D18.4D6φ: D18/D9C2 ⊆ Out D6724-D6.4D18432,310
D6.5D18 = D6.D18φ: D18/C18C2 ⊆ Out D6724D6.5D18432,287
D6.6D18 = D365S3φ: D18/C18C2 ⊆ Out D61444-D6.6D18432,288
D6.7D18 = Dic9.D6φ: D18/C18C2 ⊆ Out D6724+D6.7D18432,289
D6.8D18 = S3×Dic18φ: trivial image1444-D6.8D18432,284
D6.9D18 = C4×S3×D9φ: trivial image724D6.9D18432,290
D6.10D18 = S3×D36φ: trivial image724+D6.10D18432,291
D6.11D18 = C2×S3×Dic9φ: trivial image144D6.11D18432,308

׿
×
𝔽