Extensions 1→N→G→Q→1 with N=C2×Dic9 and Q=S3

Direct product G=N×Q with N=C2×Dic9 and Q=S3

Semidirect products G=N:Q with N=C2×Dic9 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Dic9)⋊1S3 = C6.18D36φ: S3/C3C2 ⊆ Out C2×Dic972(C2xDic9):1S3432,92
(C2×Dic9)⋊2S3 = D6⋊Dic9φ: S3/C3C2 ⊆ Out C2×Dic9144(C2xDic9):2S3432,93
(C2×Dic9)⋊3S3 = Dic3.D18φ: S3/C3C2 ⊆ Out C2×Dic9724(C2xDic9):3S3432,309
(C2×Dic9)⋊4S3 = C2×C9⋊D12φ: S3/C3C2 ⊆ Out C2×Dic972(C2xDic9):4S3432,312
(C2×Dic9)⋊5S3 = C2×C18.D6φ: trivial image72(C2xDic9):5S3432,306

Non-split extensions G=N.Q with N=C2×Dic9 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Dic9).1S3 = Dic9⋊Dic3φ: S3/C3C2 ⊆ Out C2×Dic9144(C2xDic9).1S3432,88
(C2×Dic9).2S3 = C18.Dic6φ: S3/C3C2 ⊆ Out C2×Dic9144(C2xDic9).2S3432,89
(C2×Dic9).3S3 = Dic3⋊Dic9φ: S3/C3C2 ⊆ Out C2×Dic9144(C2xDic9).3S3432,90
(C2×Dic9).4S3 = C2×C9⋊Dic6φ: S3/C3C2 ⊆ Out C2×Dic9144(C2xDic9).4S3432,303
(C2×Dic9).5S3 = Dic3×Dic9φ: trivial image144(C2xDic9).5S3432,87