extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C4×D7) = C23.D28 | φ: C4×D7/D7 → C4 ⊆ Aut C2×C4 | 112 | 8- | (C2xC4).1(C4xD7) | 448,30 |
(C2×C4).2(C4×D7) = C23.2D28 | φ: C4×D7/D7 → C4 ⊆ Aut C2×C4 | 56 | 8+ | (C2xC4).2(C4xD7) | 448,31 |
(C2×C4).3(C4×D7) = (C2×C4).D28 | φ: C4×D7/D7 → C4 ⊆ Aut C2×C4 | 112 | 8+ | (C2xC4).3(C4xD7) | 448,34 |
(C2×C4).4(C4×D7) = (C2×Q8).D14 | φ: C4×D7/D7 → C4 ⊆ Aut C2×C4 | 112 | 8- | (C2xC4).4(C4xD7) | 448,35 |
(C2×C4).5(C4×D7) = C23⋊C4⋊5D7 | φ: C4×D7/D7 → C4 ⊆ Aut C2×C4 | 112 | 8- | (C2xC4).5(C4xD7) | 448,274 |
(C2×C4).6(C4×D7) = D7×C4.10D4 | φ: C4×D7/D7 → C4 ⊆ Aut C2×C4 | 112 | 8- | (C2xC4).6(C4xD7) | 448,284 |
(C2×C4).7(C4×D7) = M4(2).21D14 | φ: C4×D7/D7 → C4 ⊆ Aut C2×C4 | 112 | 8+ | (C2xC4).7(C4xD7) | 448,285 |
(C2×C4).8(C4×D7) = C14.C4≀C2 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).8(C4xD7) | 448,8 |
(C2×C4).9(C4×D7) = C4⋊Dic7⋊C4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).9(C4xD7) | 448,9 |
(C2×C4).10(C4×D7) = C42.D14 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).10(C4xD7) | 448,21 |
(C2×C4).11(C4×D7) = C42.2D14 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).11(C4xD7) | 448,22 |
(C2×C4).12(C4×D7) = C23.30D28 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).12(C4xD7) | 448,24 |
(C2×C4).13(C4×D7) = C22.2D56 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).13(C4xD7) | 448,27 |
(C2×C4).14(C4×D7) = C4.Dic28 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).14(C4xD7) | 448,38 |
(C2×C4).15(C4×D7) = C28.47D8 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).15(C4xD7) | 448,39 |
(C2×C4).16(C4×D7) = C4.D56 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).16(C4xD7) | 448,42 |
(C2×C4).17(C4×D7) = C28.2D8 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).17(C4xD7) | 448,43 |
(C2×C4).18(C4×D7) = C28.(C4⋊C4) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).18(C4xD7) | 448,87 |
(C2×C4).19(C4×D7) = (C2×C28).Q8 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).19(C4xD7) | 448,90 |
(C2×C4).20(C4×D7) = M4(2)⋊Dic7 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).20(C4xD7) | 448,111 |
(C2×C4).21(C4×D7) = (C2×C56)⋊C4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).21(C4xD7) | 448,113 |
(C2×C4).22(C4×D7) = (C2×C28)⋊Q8 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).22(C4xD7) | 448,180 |
(C2×C4).23(C4×D7) = C14.(C4×Q8) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).23(C4xD7) | 448,181 |
(C2×C4).24(C4×D7) = C4⋊Dic7⋊7C4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).24(C4xD7) | 448,187 |
(C2×C4).25(C4×D7) = C4⋊Dic7⋊8C4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).25(C4xD7) | 448,188 |
(C2×C4).26(C4×D7) = C14.(C4×D4) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).26(C4xD7) | 448,189 |
(C2×C4).27(C4×D7) = C2.(C4×D28) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).27(C4xD7) | 448,204 |
(C2×C4).28(C4×D7) = C56⋊Q8 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).28(C4xD7) | 448,235 |
(C2×C4).29(C4×D7) = C8⋊9D28 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).29(C4xD7) | 448,240 |
(C2×C4).30(C4×D7) = C56⋊C4⋊C2 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).30(C4xD7) | 448,254 |
(C2×C4).31(C4×D7) = D14⋊C8⋊C2 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).31(C4xD7) | 448,261 |
(C2×C4).32(C4×D7) = D14⋊2M4(2) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).32(C4xD7) | 448,262 |
(C2×C4).33(C4×D7) = Dic7⋊M4(2) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).33(C4xD7) | 448,263 |
(C2×C4).34(C4×D7) = C42.27D14 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).34(C4xD7) | 448,362 |
(C2×C4).35(C4×D7) = D14⋊3M4(2) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).35(C4xD7) | 448,370 |
(C2×C4).36(C4×D7) = C42.30D14 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).36(C4xD7) | 448,373 |
(C2×C4).37(C4×D7) = C42.31D14 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).37(C4xD7) | 448,374 |
(C2×C4).38(C4×D7) = C4.Dic7⋊C4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).38(C4xD7) | 448,498 |
(C2×C4).39(C4×D7) = C4○D28⋊C4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).39(C4xD7) | 448,500 |
(C2×C4).40(C4×D7) = Dic7⋊(C4⋊C4) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).40(C4xD7) | 448,506 |
(C2×C4).41(C4×D7) = C22.23(Q8×D7) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 448 | | (C2xC4).41(C4xD7) | 448,512 |
(C2×C4).42(C4×D7) = D14⋊C4⋊7C4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).42(C4xD7) | 448,524 |
(C2×C4).43(C4×D7) = C28.(C2×Q8) | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).43(C4xD7) | 448,529 |
(C2×C4).44(C4×D7) = C4⋊C4⋊36D14 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).44(C4xD7) | 448,535 |
(C2×C4).45(C4×D7) = (C2×C4).47D28 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).45(C4xD7) | 448,538 |
(C2×C4).46(C4×D7) = C42⋊4D14 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).46(C4xD7) | 448,539 |
(C2×C4).47(C4×D7) = (C2×D28)⋊13C4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).47(C4xD7) | 448,540 |
(C2×C4).48(C4×D7) = C23.46D28 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).48(C4xD7) | 448,654 |
(C2×C4).49(C4×D7) = C23.Dic14 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).49(C4xD7) | 448,658 |
(C2×C4).50(C4×D7) = C56⋊D4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).50(C4xD7) | 448,661 |
(C2×C4).51(C4×D7) = C56⋊18D4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).51(C4xD7) | 448,662 |
(C2×C4).52(C4×D7) = C2×C28.46D4 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).52(C4xD7) | 448,664 |
(C2×C4).53(C4×D7) = C23.48D28 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | | (C2xC4).53(C4xD7) | 448,665 |
(C2×C4).54(C4×D7) = C23.49D28 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).54(C4xD7) | 448,667 |
(C2×C4).55(C4×D7) = C2×C4.12D28 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).55(C4xD7) | 448,670 |
(C2×C4).56(C4×D7) = C23.20D28 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).56(C4xD7) | 448,673 |
(C2×C4).57(C4×D7) = C42.87D14 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 224 | | (C2xC4).57(C4xD7) | 448,969 |
(C2×C4).58(C4×D7) = C28.70C24 | φ: C4×D7/C14 → C22 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).58(C4xD7) | 448,1198 |
(C2×C4).59(C4×D7) = Dic7⋊C4⋊C4 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).59(C4xD7) | 448,186 |
(C2×C4).60(C4×D7) = D14⋊C4⋊5C4 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).60(C4xD7) | 448,203 |
(C2×C4).61(C4×D7) = D14.4C42 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).61(C4xD7) | 448,242 |
(C2×C4).62(C4×D7) = C42.185D14 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).62(C4xD7) | 448,243 |
(C2×C4).63(C4×D7) = C7⋊D4⋊C8 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).63(C4xD7) | 448,259 |
(C2×C4).64(C4×D7) = C7⋊C8⋊26D4 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).64(C4xD7) | 448,264 |
(C2×C4).65(C4×D7) = D28⋊2C8 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).65(C4xD7) | 448,40 |
(C2×C4).66(C4×D7) = Dic14⋊2C8 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).66(C4xD7) | 448,41 |
(C2×C4).67(C4×D7) = Dic14.C8 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | 4 | (C2xC4).67(C4xD7) | 448,72 |
(C2×C4).68(C4×D7) = C28.2C42 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).68(C4xD7) | 448,89 |
(C2×C4).69(C4×D7) = C28.3C42 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).69(C4xD7) | 448,112 |
(C2×C4).70(C4×D7) = Dic14⋊C8 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).70(C4xD7) | 448,364 |
(C2×C4).71(C4×D7) = C28.M4(2) | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).71(C4xD7) | 448,365 |
(C2×C4).72(C4×D7) = D28⋊C8 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).72(C4xD7) | 448,368 |
(C2×C4).73(C4×D7) = C28⋊2M4(2) | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).73(C4xD7) | 448,372 |
(C2×C4).74(C4×D7) = C16.12D14 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | 4 | (C2xC4).74(C4xD7) | 448,441 |
(C2×C4).75(C4×D7) = C2×C14.D8 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).75(C4xD7) | 448,499 |
(C2×C4).76(C4×D7) = C2×C14.Q16 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).76(C4xD7) | 448,503 |
(C2×C4).77(C4×D7) = C28⋊(C4⋊C4) | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).77(C4xD7) | 448,507 |
(C2×C4).78(C4×D7) = (C2×Dic7)⋊6Q8 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).78(C4xD7) | 448,508 |
(C2×C4).79(C4×D7) = (C2×D28)⋊10C4 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).79(C4xD7) | 448,522 |
(C2×C4).80(C4×D7) = C28.5C42 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).80(C4xD7) | 448,531 |
(C2×C4).81(C4×D7) = C4.(C2×D28) | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).81(C4xD7) | 448,536 |
(C2×C4).82(C4×D7) = C28.439(C2×D4) | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).82(C4xD7) | 448,653 |
(C2×C4).83(C4×D7) = C28.7C42 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).83(C4xD7) | 448,656 |
(C2×C4).84(C4×D7) = (C2×D28).14C4 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).84(C4xD7) | 448,663 |
(C2×C4).85(C4×D7) = C2×D28⋊4C4 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).85(C4xD7) | 448,672 |
(C2×C4).86(C4×D7) = C2×Dic7⋊3Q8 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).86(C4xD7) | 448,949 |
(C2×C4).87(C4×D7) = C2×D28.C4 | φ: C4×D7/Dic7 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).87(C4xD7) | 448,1197 |
(C2×C4).88(C4×D7) = D14.C42 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).88(C4xD7) | 448,223 |
(C2×C4).89(C4×D7) = C42.243D14 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).89(C4xD7) | 448,224 |
(C2×C4).90(C4×D7) = C4×Dic7⋊C4 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).90(C4xD7) | 448,465 |
(C2×C4).91(C4×D7) = (C2×C42).D7 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).91(C4xD7) | 448,467 |
(C2×C4).92(C4×D7) = (C2×C42)⋊D7 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).92(C4xD7) | 448,474 |
(C2×C4).93(C4×D7) = C8×C7⋊D4 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).93(C4xD7) | 448,643 |
(C2×C4).94(C4×D7) = C56⋊32D4 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).94(C4xD7) | 448,645 |
(C2×C4).95(C4×D7) = C4.8Dic28 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).95(C4xD7) | 448,13 |
(C2×C4).96(C4×D7) = C4.17D56 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).96(C4xD7) | 448,16 |
(C2×C4).97(C4×D7) = D28.C8 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | 2 | (C2xC4).97(C4xD7) | 448,65 |
(C2×C4).98(C4×D7) = C28.8C42 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).98(C4xD7) | 448,80 |
(C2×C4).99(C4×D7) = C28.9C42 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).99(C4xD7) | 448,108 |
(C2×C4).100(C4×D7) = C28.10C42 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).100(C4xD7) | 448,109 |
(C2×C4).101(C4×D7) = C8×Dic14 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).101(C4xD7) | 448,212 |
(C2×C4).102(C4×D7) = C56⋊11Q8 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).102(C4xD7) | 448,213 |
(C2×C4).103(C4×D7) = C8×D28 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).103(C4xD7) | 448,220 |
(C2×C4).104(C4×D7) = C8⋊6D28 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).104(C4xD7) | 448,222 |
(C2×C4).105(C4×D7) = D28.4C8 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | 2 | (C2xC4).105(C4xD7) | 448,435 |
(C2×C4).106(C4×D7) = C4×C4.Dic7 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).106(C4xD7) | 448,456 |
(C2×C4).107(C4×D7) = C2×Dic14⋊C4 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).107(C4xD7) | 448,461 |
(C2×C4).108(C4×D7) = C28⋊4(C4⋊C4) | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).108(C4xD7) | 448,462 |
(C2×C4).109(C4×D7) = (C2×C28)⋊10Q8 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).109(C4xD7) | 448,463 |
(C2×C4).110(C4×D7) = C4×C4⋊Dic7 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).110(C4xD7) | 448,468 |
(C2×C4).111(C4×D7) = (C2×C4)⋊6D28 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).111(C4xD7) | 448,473 |
(C2×C4).112(C4×D7) = C28.12C42 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).112(C4xD7) | 448,635 |
(C2×C4).113(C4×D7) = Dic7⋊C8⋊C2 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).113(C4xD7) | 448,636 |
(C2×C4).114(C4×D7) = C2×C28.44D4 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).114(C4xD7) | 448,637 |
(C2×C4).115(C4×D7) = (C22×C8)⋊D7 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).115(C4xD7) | 448,644 |
(C2×C4).116(C4×D7) = C2×C2.D56 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).116(C4xD7) | 448,646 |
(C2×C4).117(C4×D7) = C23.23D28 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).117(C4xD7) | 448,647 |
(C2×C4).118(C4×D7) = C2×C4×Dic14 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).118(C4xD7) | 448,920 |
(C2×C4).119(C4×D7) = C2×D28.2C4 | φ: C4×D7/C28 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).119(C4xD7) | 448,1191 |
(C2×C4).120(C4×D7) = Dic7.5C42 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).120(C4xD7) | 448,182 |
(C2×C4).121(C4×D7) = Dic7⋊C42 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).121(C4xD7) | 448,183 |
(C2×C4).122(C4×D7) = C7⋊(C42⋊8C4) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).122(C4xD7) | 448,184 |
(C2×C4).123(C4×D7) = C7⋊(C42⋊5C4) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).123(C4xD7) | 448,185 |
(C2×C4).124(C4×D7) = C22.58(D4×D7) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).124(C4xD7) | 448,198 |
(C2×C4).125(C4×D7) = D14⋊(C4⋊C4) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).125(C4xD7) | 448,201 |
(C2×C4).126(C4×D7) = D7×C8⋊C4 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).126(C4xD7) | 448,238 |
(C2×C4).127(C4×D7) = C42.182D14 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).127(C4xD7) | 448,239 |
(C2×C4).128(C4×D7) = Dic7.C42 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).128(C4xD7) | 448,241 |
(C2×C4).129(C4×D7) = Dic7.5M4(2) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).129(C4xD7) | 448,252 |
(C2×C4).130(C4×D7) = Dic7.M4(2) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).130(C4xD7) | 448,253 |
(C2×C4).131(C4×D7) = D7×C22⋊C8 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).131(C4xD7) | 448,258 |
(C2×C4).132(C4×D7) = D14⋊M4(2) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).132(C4xD7) | 448,260 |
(C2×C4).133(C4×D7) = C28.53D8 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).133(C4xD7) | 448,36 |
(C2×C4).134(C4×D7) = C28.39SD16 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).134(C4xD7) | 448,37 |
(C2×C4).135(C4×D7) = C56.9Q8 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).135(C4xD7) | 448,68 |
(C2×C4).136(C4×D7) = C112⋊C4 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).136(C4xD7) | 448,69 |
(C2×C4).137(C4×D7) = M5(2)⋊D7 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).137(C4xD7) | 448,71 |
(C2×C4).138(C4×D7) = C28.C42 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).138(C4xD7) | 448,86 |
(C2×C4).139(C4×D7) = C42⋊Dic7 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).139(C4xD7) | 448,88 |
(C2×C4).140(C4×D7) = C23.9D28 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).140(C4xD7) | 448,114 |
(C2×C4).141(C4×D7) = C28.4C42 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).141(C4xD7) | 448,115 |
(C2×C4).142(C4×D7) = M4(2)⋊4Dic7 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).142(C4xD7) | 448,116 |
(C2×C4).143(C4×D7) = C28.21C42 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).143(C4xD7) | 448,117 |
(C2×C4).144(C4×D7) = D7×C4⋊C8 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).144(C4xD7) | 448,366 |
(C2×C4).145(C4×D7) = C42.200D14 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).145(C4xD7) | 448,367 |
(C2×C4).146(C4×D7) = C42.202D14 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).146(C4xD7) | 448,369 |
(C2×C4).147(C4×D7) = C28⋊M4(2) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).147(C4xD7) | 448,371 |
(C2×C4).148(C4×D7) = D7×M5(2) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).148(C4xD7) | 448,440 |
(C2×C4).149(C4×D7) = C2×C28.Q8 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).149(C4xD7) | 448,496 |
(C2×C4).150(C4×D7) = C2×C4.Dic14 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).150(C4xD7) | 448,497 |
(C2×C4).151(C4×D7) = C4⋊C4×Dic7 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).151(C4xD7) | 448,509 |
(C2×C4).152(C4×D7) = (C4×Dic7)⋊8C4 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).152(C4xD7) | 448,510 |
(C2×C4).153(C4×D7) = (C4×Dic7)⋊9C4 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 448 | | (C2xC4).153(C4xD7) | 448,511 |
(C2×C4).154(C4×D7) = C4⋊(D14⋊C4) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).154(C4xD7) | 448,521 |
(C2×C4).155(C4×D7) = C28.45(C4⋊C4) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).155(C4xD7) | 448,532 |
(C2×C4).156(C4×D7) = M4(2)×Dic7 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).156(C4xD7) | 448,651 |
(C2×C4).157(C4×D7) = Dic7⋊4M4(2) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).157(C4xD7) | 448,652 |
(C2×C4).158(C4×D7) = C2×C28.53D4 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).158(C4xD7) | 448,657 |
(C2×C4).159(C4×D7) = D14⋊6M4(2) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).159(C4xD7) | 448,660 |
(C2×C4).160(C4×D7) = M4(2).31D14 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | 4 | (C2xC4).160(C4xD7) | 448,666 |
(C2×C4).161(C4×D7) = C2×C4⋊C4⋊7D7 | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 224 | | (C2xC4).161(C4xD7) | 448,955 |
(C2×C4).162(C4×D7) = C2×D7×M4(2) | φ: C4×D7/D14 → C2 ⊆ Aut C2×C4 | 112 | | (C2xC4).162(C4xD7) | 448,1196 |
(C2×C4).163(C4×D7) = C8×C7⋊C8 | central extension (φ=1) | 448 | | (C2xC4).163(C4xD7) | 448,10 |
(C2×C4).164(C4×D7) = C42.279D14 | central extension (φ=1) | 448 | | (C2xC4).164(C4xD7) | 448,11 |
(C2×C4).165(C4×D7) = C56⋊C8 | central extension (φ=1) | 448 | | (C2xC4).165(C4xD7) | 448,12 |
(C2×C4).166(C4×D7) = C16×Dic7 | central extension (φ=1) | 448 | | (C2xC4).166(C4xD7) | 448,57 |
(C2×C4).167(C4×D7) = Dic7⋊C16 | central extension (φ=1) | 448 | | (C2xC4).167(C4xD7) | 448,58 |
(C2×C4).168(C4×D7) = C112⋊9C4 | central extension (φ=1) | 448 | | (C2xC4).168(C4xD7) | 448,59 |
(C2×C4).169(C4×D7) = D14⋊C16 | central extension (φ=1) | 224 | | (C2xC4).169(C4xD7) | 448,64 |
(C2×C4).170(C4×D7) = (C2×C28)⋊3C8 | central extension (φ=1) | 448 | | (C2xC4).170(C4xD7) | 448,81 |
(C2×C4).171(C4×D7) = (C2×C56)⋊5C4 | central extension (φ=1) | 448 | | (C2xC4).171(C4xD7) | 448,107 |
(C2×C4).172(C4×D7) = D7×C4×C8 | central extension (φ=1) | 224 | | (C2xC4).172(C4xD7) | 448,218 |
(C2×C4).173(C4×D7) = C42.282D14 | central extension (φ=1) | 224 | | (C2xC4).173(C4xD7) | 448,219 |
(C2×C4).174(C4×D7) = C4×C8⋊D7 | central extension (φ=1) | 224 | | (C2xC4).174(C4xD7) | 448,221 |
(C2×C4).175(C4×D7) = D7×C2×C16 | central extension (φ=1) | 224 | | (C2xC4).175(C4xD7) | 448,433 |
(C2×C4).176(C4×D7) = C2×C16⋊D7 | central extension (φ=1) | 224 | | (C2xC4).176(C4xD7) | 448,434 |
(C2×C4).177(C4×D7) = C2×C4×C7⋊C8 | central extension (φ=1) | 448 | | (C2xC4).177(C4xD7) | 448,454 |
(C2×C4).178(C4×D7) = C2×C42.D7 | central extension (φ=1) | 448 | | (C2xC4).178(C4xD7) | 448,455 |
(C2×C4).179(C4×D7) = C42×Dic7 | central extension (φ=1) | 448 | | (C2xC4).179(C4xD7) | 448,464 |
(C2×C4).180(C4×D7) = C42⋊4Dic7 | central extension (φ=1) | 448 | | (C2xC4).180(C4xD7) | 448,466 |
(C2×C4).181(C4×D7) = C2×C8×Dic7 | central extension (φ=1) | 448 | | (C2xC4).181(C4xD7) | 448,632 |
(C2×C4).182(C4×D7) = C2×Dic7⋊C8 | central extension (φ=1) | 448 | | (C2xC4).182(C4xD7) | 448,633 |
(C2×C4).183(C4×D7) = C2×C56⋊C4 | central extension (φ=1) | 448 | | (C2xC4).183(C4xD7) | 448,634 |
(C2×C4).184(C4×D7) = C2×D14⋊C8 | central extension (φ=1) | 224 | | (C2xC4).184(C4xD7) | 448,642 |
(C2×C4).185(C4×D7) = C2×C42⋊D7 | central extension (φ=1) | 224 | | (C2xC4).185(C4xD7) | 448,925 |
(C2×C4).186(C4×D7) = D7×C22×C8 | central extension (φ=1) | 224 | | (C2xC4).186(C4xD7) | 448,1189 |
(C2×C4).187(C4×D7) = C22×C8⋊D7 | central extension (φ=1) | 224 | | (C2xC4).187(C4xD7) | 448,1190 |