Extensions 1→N→G→Q→1 with N=D4 and Q=S3×C10

Direct product G=N×Q with N=D4 and Q=S3×C10
dρLabelID
S3×D4×C10120S3xD4xC10480,1154

Semidirect products G=N:Q with N=D4 and Q=S3×C10
extensionφ:Q→Out NdρLabelID
D41(S3×C10) = C5×S3×D8φ: S3×C10/C5×S3C2 ⊆ Out D41204D4:1(S3xC10)480,789
D42(S3×C10) = C5×D8⋊S3φ: S3×C10/C5×S3C2 ⊆ Out D41204D4:2(S3xC10)480,790
D43(S3×C10) = C10×D4⋊S3φ: S3×C10/C30C2 ⊆ Out D4240D4:3(S3xC10)480,810
D44(S3×C10) = C5×D4⋊D6φ: S3×C10/C30C2 ⊆ Out D41204D4:4(S3xC10)480,828
D45(S3×C10) = C10×D42S3φ: trivial image240D4:5(S3xC10)480,1155
D46(S3×C10) = C5×D46D6φ: trivial image1204D4:6(S3xC10)480,1156
D47(S3×C10) = C5×S3×C4○D4φ: trivial image1204D4:7(S3xC10)480,1160
D48(S3×C10) = C5×D4○D12φ: trivial image1204D4:8(S3xC10)480,1161

Non-split extensions G=N.Q with N=D4 and Q=S3×C10
extensionφ:Q→Out NdρLabelID
D4.1(S3×C10) = C5×D83S3φ: S3×C10/C5×S3C2 ⊆ Out D42404D4.1(S3xC10)480,791
D4.2(S3×C10) = C5×S3×SD16φ: S3×C10/C5×S3C2 ⊆ Out D41204D4.2(S3xC10)480,792
D4.3(S3×C10) = C5×Q83D6φ: S3×C10/C5×S3C2 ⊆ Out D41204D4.3(S3xC10)480,793
D4.4(S3×C10) = C5×D4.D6φ: S3×C10/C5×S3C2 ⊆ Out D42404D4.4(S3xC10)480,794
D4.5(S3×C10) = C5×Q8.7D6φ: S3×C10/C5×S3C2 ⊆ Out D42404D4.5(S3xC10)480,795
D4.6(S3×C10) = C5×D126C22φ: S3×C10/C30C2 ⊆ Out D41204D4.6(S3xC10)480,811
D4.7(S3×C10) = C10×D4.S3φ: S3×C10/C30C2 ⊆ Out D4240D4.7(S3xC10)480,812
D4.8(S3×C10) = C5×Q8.13D6φ: S3×C10/C30C2 ⊆ Out D42404D4.8(S3xC10)480,829
D4.9(S3×C10) = C5×Q8.14D6φ: S3×C10/C30C2 ⊆ Out D42404D4.9(S3xC10)480,830
D4.10(S3×C10) = C5×Q8○D12φ: trivial image2404D4.10(S3xC10)480,1162

׿
×
𝔽