Extensions 1→N→G→Q→1 with N=C5 and Q=Dic3⋊D4

Direct product G=N×Q with N=C5 and Q=Dic3⋊D4
dρLabelID
C5×Dic3⋊D4240C5xDic3:D4480,763

Semidirect products G=N:Q with N=C5 and Q=Dic3⋊D4
extensionφ:Q→Aut NdρLabelID
C51(Dic3⋊D4) = D302D4φ: Dic3⋊D4/Dic3⋊C4C2 ⊆ Aut C5240C5:1(Dic3:D4)480,535
C52(Dic3⋊D4) = D3012D4φ: Dic3⋊D4/D6⋊C4C2 ⊆ Aut C5240C5:2(Dic3:D4)480,537
C53(Dic3⋊D4) = D309D4φ: Dic3⋊D4/C3×C22⋊C4C2 ⊆ Aut C5240C5:3(Dic3:D4)480,849
C54(Dic3⋊D4) = D6⋊D20φ: Dic3⋊D4/S3×C2×C4C2 ⊆ Aut C5240C5:4(Dic3:D4)480,530
C55(Dic3⋊D4) = Dic152D4φ: Dic3⋊D4/C2×D12C2 ⊆ Aut C5240C5:5(Dic3:D4)480,529
C56(Dic3⋊D4) = D307D4φ: Dic3⋊D4/C2×C3⋊D4C2 ⊆ Aut C5240C5:6(Dic3:D4)480,633
C57(Dic3⋊D4) = Dic154D4φ: Dic3⋊D4/C2×C3⋊D4C2 ⊆ Aut C5240C5:7(Dic3:D4)480,634


׿
×
𝔽