Extensions 1→N→G→Q→1 with N=C3×C9 and Q=D9

Direct product G=N×Q with N=C3×C9 and Q=D9
dρLabelID
D9×C3×C954D9xC3xC9486,91

Semidirect products G=N:Q with N=C3×C9 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1D9 = C9⋊S3⋊C9φ: D9/C3S3 ⊆ Aut C3×C954(C3xC9):1D9486,3
(C3×C9)⋊2D9 = (C3×C9)⋊D9φ: D9/C3S3 ⊆ Aut C3×C9546(C3xC9):2D9486,21
(C3×C9)⋊3D9 = (C3×C9)⋊3D9φ: D9/C3S3 ⊆ Aut C3×C9546(C3xC9):3D9486,23
(C3×C9)⋊4D9 = C3.2(C9⋊D9)φ: D9/C3S3 ⊆ Aut C3×C9162(C3xC9):4D9486,42
(C3×C9)⋊5D9 = (C3×C9)⋊5D9φ: D9/C3S3 ⊆ Aut C3×C981(C3xC9):5D9486,53
(C3×C9)⋊6D9 = (C3×C9)⋊6D9φ: D9/C3S3 ⊆ Aut C3×C981(C3xC9):6D9486,54
(C3×C9)⋊7D9 = C923C6φ: D9/C3S3 ⊆ Aut C3×C981(C3xC9):7D9486,141
(C3×C9)⋊8D9 = C924S3φ: D9/C3S3 ⊆ Aut C3×C9546(C3xC9):8D9486,140
(C3×C9)⋊9D9 = C9×C9⋊S3φ: D9/C9C2 ⊆ Aut C3×C954(C3xC9):9D9486,133
(C3×C9)⋊10D9 = C3×C9⋊D9φ: D9/C9C2 ⊆ Aut C3×C9162(C3xC9):10D9486,134
(C3×C9)⋊11D9 = C928S3φ: D9/C9C2 ⊆ Aut C3×C9243(C3xC9):11D9486,180

Non-split extensions G=N.Q with N=C3×C9 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C3×C9).1D9 = C273C18φ: D9/C3S3 ⊆ Aut C3×C9546(C3xC9).1D9486,15
(C3×C9).2D9 = C322D27φ: D9/C3S3 ⊆ Aut C3×C9546(C3xC9).2D9486,51
(C3×C9).3D9 = C33.D9φ: D9/C3S3 ⊆ Aut C3×C9276+(C3xC9).3D9486,55
(C3×C9).4D9 = C81⋊C6φ: D9/C3S3 ⊆ Aut C3×C9816+(C3xC9).4D9486,34
(C3×C9).5D9 = C33.5D9φ: D9/C3S3 ⊆ Aut C3×C981(C3xC9).5D9486,162
(C3×C9).6D9 = C9×D27φ: D9/C9C2 ⊆ Aut C3×C9542(C3xC9).6D9486,13
(C3×C9).7D9 = C3×D81φ: D9/C9C2 ⊆ Aut C3×C91622(C3xC9).7D9486,32
(C3×C9).8D9 = C9⋊D27φ: D9/C9C2 ⊆ Aut C3×C9243(C3xC9).8D9486,50
(C3×C9).9D9 = C81⋊S3φ: D9/C9C2 ⊆ Aut C3×C9243(C3xC9).9D9486,60
(C3×C9).10D9 = C3×C27⋊S3φ: D9/C9C2 ⊆ Aut C3×C9162(C3xC9).10D9486,160
(C3×C9).11D9 = C324D27φ: D9/C9C2 ⊆ Aut C3×C9243(C3xC9).11D9486,184

׿
×
𝔽