extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9)⋊1D9 = C9⋊S3⋊C9 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 54 | | (C3xC9):1D9 | 486,3 |
(C3×C9)⋊2D9 = (C3×C9)⋊D9 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):2D9 | 486,21 |
(C3×C9)⋊3D9 = (C3×C9)⋊3D9 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):3D9 | 486,23 |
(C3×C9)⋊4D9 = C3.2(C9⋊D9) | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 162 | | (C3xC9):4D9 | 486,42 |
(C3×C9)⋊5D9 = (C3×C9)⋊5D9 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9):5D9 | 486,53 |
(C3×C9)⋊6D9 = (C3×C9)⋊6D9 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9):6D9 | 486,54 |
(C3×C9)⋊7D9 = C92⋊3C6 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9):7D9 | 486,141 |
(C3×C9)⋊8D9 = C92⋊4S3 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9):8D9 | 486,140 |
(C3×C9)⋊9D9 = C9×C9⋊S3 | φ: D9/C9 → C2 ⊆ Aut C3×C9 | 54 | | (C3xC9):9D9 | 486,133 |
(C3×C9)⋊10D9 = C3×C9⋊D9 | φ: D9/C9 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9):10D9 | 486,134 |
(C3×C9)⋊11D9 = C92⋊8S3 | φ: D9/C9 → C2 ⊆ Aut C3×C9 | 243 | | (C3xC9):11D9 | 486,180 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9).1D9 = C27⋊3C18 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).1D9 | 486,15 |
(C3×C9).2D9 = C32⋊2D27 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 54 | 6 | (C3xC9).2D9 | 486,51 |
(C3×C9).3D9 = C33.D9 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 27 | 6+ | (C3xC9).3D9 | 486,55 |
(C3×C9).4D9 = C81⋊C6 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 81 | 6+ | (C3xC9).4D9 | 486,34 |
(C3×C9).5D9 = C33.5D9 | φ: D9/C3 → S3 ⊆ Aut C3×C9 | 81 | | (C3xC9).5D9 | 486,162 |
(C3×C9).6D9 = C9×D27 | φ: D9/C9 → C2 ⊆ Aut C3×C9 | 54 | 2 | (C3xC9).6D9 | 486,13 |
(C3×C9).7D9 = C3×D81 | φ: D9/C9 → C2 ⊆ Aut C3×C9 | 162 | 2 | (C3xC9).7D9 | 486,32 |
(C3×C9).8D9 = C9⋊D27 | φ: D9/C9 → C2 ⊆ Aut C3×C9 | 243 | | (C3xC9).8D9 | 486,50 |
(C3×C9).9D9 = C81⋊S3 | φ: D9/C9 → C2 ⊆ Aut C3×C9 | 243 | | (C3xC9).9D9 | 486,60 |
(C3×C9).10D9 = C3×C27⋊S3 | φ: D9/C9 → C2 ⊆ Aut C3×C9 | 162 | | (C3xC9).10D9 | 486,160 |
(C3×C9).11D9 = C32⋊4D27 | φ: D9/C9 → C2 ⊆ Aut C3×C9 | 243 | | (C3xC9).11D9 | 486,184 |