direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C8.C4, C23.9Q8, M4(2).9C22, C8.18(C2×C4), (C2×C8).10C4, C4.74(C2×D4), C4.16(C4⋊C4), (C2×C4).21Q8, C4○(C8.C4), (C2×C4).148D4, C22.1(C2×Q8), (C2×C8).88C22, C4.28(C22×C4), (C22×C8).12C2, (C2×C4).71C23, C22.21(C4⋊C4), (C2×M4(2)).15C2, (C22×C4).116C22, C2.15(C2×C4⋊C4), (C2×C4).75(C2×C4), SmallGroup(64,110)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C8.C4
G = < a,b,c | a2=b8=1, c4=b4, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2×C8.C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | 8O | 8P | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | i | -i | i | -i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | -i | i | -i | i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -i | i | -i | i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | i | -i | i | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ20 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | √2 | -√-2 | √-2 | √-2 | -√2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | √2 | -√-2 | -√-2 | √-2 | √2 | -√2 | -√2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | -√2 | √-2 | -√-2 | -√-2 | √2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | -√2 | √-2 | √-2 | -√-2 | -√2 | √2 | √2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | √2 | √-2 | -√-2 | -√-2 | -√2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | √2 | √-2 | √-2 | -√-2 | √2 | -√2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ27 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | -√2 | -√-2 | √-2 | √-2 | √2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ28 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | -√2 | -√-2 | -√-2 | √-2 | -√2 | √2 | √2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 32 3 30 5 28 7 26)(2 31 4 29 6 27 8 25)(9 18 15 20 13 22 11 24)(10 17 16 19 14 21 12 23)
G:=sub<Sym(32)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32,3,30,5,28,7,26)(2,31,4,29,6,27,8,25)(9,18,15,20,13,22,11,24)(10,17,16,19,14,21,12,23)>;
G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32,3,30,5,28,7,26)(2,31,4,29,6,27,8,25)(9,18,15,20,13,22,11,24)(10,17,16,19,14,21,12,23) );
G=PermutationGroup([[(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,32,3,30,5,28,7,26),(2,31,4,29,6,27,8,25),(9,18,15,20,13,22,11,24),(10,17,16,19,14,21,12,23)]])
C2×C8.C4 is a maximal subgroup of
C8.8C42 C8.9C42 C8.11C42 C8.13C42 C8.2C42 M5(2).C4 C8.4C42 C8.14C42 C8.5C42 C8.6C42 C24.19Q8 C24.9Q8 (C2×C8).103D4 C8○D4⋊C4 C4○D4.4Q8 C4○D4.5Q8 C8.(C4⋊C4) C42.324D4 C42.106D4 C24.10Q8 M4(2).42D4 M4(2).24D4 C42.62Q8 C42.28Q8 C42.430D4 M4(2).5Q8 M4(2).6Q8 M4(2).27D4 C42.326D4 C42.116D4 M4(2).31D4 M4(2).32D4 M4(2).33D4 M4(2).10D4 M4(2).11D4 M4(2).12D4 M4(2).13D4 C23.20SD16 C23.21SD16 M5(2)⋊3C4 M5(2).1C4 M4(2).29C23 M4(2)○D8 M4(2).10C23 (C8×D5).C4
C2×C8.C4 is a maximal quotient of
C42.42Q8 C8⋊8M4(2) C8⋊7M4(2) C42.43Q8 C42.92D4 C42.21Q8 C24.19Q8 C42.322D4 C42.324D4 C24.10Q8 C42.430D4 (C8×D5).C4
Matrix representation of C2×C8.C4 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 9 | 0 |
0 | 5 | 2 |
13 | 0 | 0 |
0 | 1 | 2 |
0 | 6 | 16 |
G:=sub<GL(3,GF(17))| [16,0,0,0,1,0,0,0,1],[1,0,0,0,9,5,0,0,2],[13,0,0,0,1,6,0,2,16] >;
C2×C8.C4 in GAP, Magma, Sage, TeX
C_2\times C_8.C_4
% in TeX
G:=Group("C2xC8.C4");
// GroupNames label
G:=SmallGroup(64,110);
// by ID
G=gap.SmallGroup(64,110);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,55,963,117,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^8=1,c^4=b^4,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×C8.C4 in TeX
Character table of C2×C8.C4 in TeX