Copied to
clipboard

G = SD167D4order 128 = 27

3rd semidirect product of SD16 and D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: SD167D4, C42.35C23, C4.1222+ 1+4, C2.52D42, C89D45C2, C8.31(C2×D4), D45D43C2, C4⋊D834C2, C83D418C2, C87D430C2, C8⋊D428C2, C4⋊C827C22, C4⋊C4.356D4, Q86D42C2, D4.20(C2×D4), Q8.18(C2×D4), D4⋊D434C2, C22⋊D827C2, (C2×D4).161D4, C2.38(D4○D8), C4⋊D49C22, (C2×C8).85C23, C22⋊C4.40D4, (C4×Q8)⋊19C22, C4.82(C22×D4), C8⋊C418C22, C2.D834C22, D4.7D434C2, C4⋊C4.207C23, C41D410C22, C22⋊C823C22, (C2×C4).466C24, Q8.D435C2, (C22×C8)⋊25C22, (C2×Q16)⋊46C22, (C2×D8).79C22, C23.100(C2×D4), SD16⋊C429C2, D4⋊C437C22, Q8⋊C439C22, (C2×SD16)⋊27C22, (C4×D4).142C22, (C2×D4).206C23, (C2×Q8).386C23, C22⋊Q8.56C22, C4.4D4.51C22, C22.726(C22×D4), C2.76(D8⋊C22), (C22×C4).1118C23, (C22×D4).398C22, (C2×M4(2)).101C22, (C2×C4○D8)⋊24C2, (C2×C8⋊C22)⋊29C2, (C2×C4).590(C2×D4), (C2×C4○D4)⋊14C22, SmallGroup(128,2000)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — SD167D4
C1C2C22C2×C4C2×D4C2×C4○D4C2×C4○D8 — SD167D4
C1C2C2×C4 — SD167D4
C1C22C4×D4 — SD167D4
C1C2C2C2×C4 — SD167D4

Generators and relations for SD167D4
 G = < a,b,c,d | a8=b2=c4=d2=1, bab=a3, cac-1=dad=a-1, cbc-1=a4b, bd=db, dcd=c-1 >

Subgroups: 584 in 255 conjugacy classes, 94 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C2×C22⋊C4, C4×D4, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C41D4, C41D4, C22×C8, C2×M4(2), C2×D8, C2×SD16, C2×Q16, C4○D8, C8⋊C22, C22×D4, C2×C4○D4, C89D4, SD16⋊C4, C22⋊D8, D4⋊D4, D4.7D4, C4⋊D8, Q8.D4, C87D4, C8⋊D4, C83D4, D45D4, Q86D4, C2×C4○D8, C2×C8⋊C22, SD167D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, D42, D8⋊C22, D4○D8, SD167D4

Character table of SD167D4

 class 12A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F4G4H4I4J4K4L8A8B8C8D8E8F
 size 11114444888222244444888444488
ρ111111111111111111111111111111    trivial
ρ2111111-1-1-1-1-11111-1111-1-1-1-1111111    linear of order 2
ρ3111111-1-11-11111111111-11-1-1-1-1-1-1-1    linear of order 2
ρ411111111-11-11111-1111-11-11-1-1-1-1-1-1    linear of order 2
ρ511111-1-1-1-11111111-1-1-11-1-11-1-1-1-111    linear of order 2
ρ611111-1111-1-11111-1-1-1-1-111-1-1-1-1-111    linear of order 2
ρ711111-111-1-1111111-1-1-111-1-11111-1-1    linear of order 2
ρ811111-1-1-111-11111-1-1-1-1-1-1111111-1-1    linear of order 2
ρ91111-11-1-1-1-11-111-1-11-1-1-11111-1-111-1    linear of order 2
ρ101111-111111-1-111-111-1-11-1-1-11-1-111-1    linear of order 2
ρ111111-1111-111-111-1-11-1-1-1-11-1-111-1-11    linear of order 2
ρ121111-11-1-11-1-1-111-111-1-111-11-111-1-11    linear of order 2
ρ131111-1-1111-11-111-1-1-111-1-1-11-111-11-1    linear of order 2
ρ141111-1-1-1-1-11-1-111-11-111111-1-111-11-1    linear of order 2
ρ151111-1-1-1-1111-111-1-1-111-11-1-11-1-11-11    linear of order 2
ρ161111-1-111-1-1-1-111-11-1111-1111-1-11-11    linear of order 2
ρ172-22-2002-200002-20-20002000-200200    orthogonal lifted from D4
ρ182-22-200-2200002-202000-2000-200200    orthogonal lifted from D4
ρ192222-22000002-2-220-2-220000000000    orthogonal lifted from D4
ρ202-22-200-2200002-20-20002000200-200    orthogonal lifted from D4
ρ212-22-2002-200002-202000-2000200-200    orthogonal lifted from D4
ρ2222222-200000-2-2-2-202-220000000000    orthogonal lifted from D4
ρ2322222200000-2-2-2-20-22-20000000000    orthogonal lifted from D4
ρ242222-2-2000002-2-22022-20000000000    orthogonal lifted from D4
ρ254-44-400000000-44000000000000000    orthogonal lifted from 2+ 1+4
ρ2644-4-400000000000000000000-2222000    orthogonal lifted from D4○D8
ρ2744-4-40000000000000000000022-22000    orthogonal lifted from D4○D8
ρ284-4-440000000-4i004i00000000000000    complex lifted from D8⋊C22
ρ294-4-4400000004i00-4i00000000000000    complex lifted from D8⋊C22

Smallest permutation representation of SD167D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 16)(2 11)(3 14)(4 9)(5 12)(6 15)(7 10)(8 13)(17 26)(18 29)(19 32)(20 27)(21 30)(22 25)(23 28)(24 31)
(1 24 12 31)(2 23 13 30)(3 22 14 29)(4 21 15 28)(5 20 16 27)(6 19 9 26)(7 18 10 25)(8 17 11 32)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 32)(24 31)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16)(2,11)(3,14)(4,9)(5,12)(6,15)(7,10)(8,13)(17,26)(18,29)(19,32)(20,27)(21,30)(22,25)(23,28)(24,31), (1,24,12,31)(2,23,13,30)(3,22,14,29)(4,21,15,28)(5,20,16,27)(6,19,9,26)(7,18,10,25)(8,17,11,32), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16)(2,11)(3,14)(4,9)(5,12)(6,15)(7,10)(8,13)(17,26)(18,29)(19,32)(20,27)(21,30)(22,25)(23,28)(24,31), (1,24,12,31)(2,23,13,30)(3,22,14,29)(4,21,15,28)(5,20,16,27)(6,19,9,26)(7,18,10,25)(8,17,11,32), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,16),(2,11),(3,14),(4,9),(5,12),(6,15),(7,10),(8,13),(17,26),(18,29),(19,32),(20,27),(21,30),(22,25),(23,28),(24,31)], [(1,24,12,31),(2,23,13,30),(3,22,14,29),(4,21,15,28),(5,20,16,27),(6,19,9,26),(7,18,10,25),(8,17,11,32)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,32),(24,31)]])

Matrix representation of SD167D4 in GL6(𝔽17)

1600000
0160000
0000314
000033
0014300
00141400
,
100000
010000
0016000
000100
0000160
000001
,
16150000
110000
000001
000010
000100
001000
,
1600000
110000
001000
0001600
0000160
000001

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,14,14,0,0,0,0,3,14,0,0,3,3,0,0,0,0,14,3,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[16,1,0,0,0,0,15,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0],[16,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1] >;

SD167D4 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\rtimes_7D_4
% in TeX

G:=Group("SD16:7D4");
// GroupNames label

G:=SmallGroup(128,2000);
// by ID

G=gap.SmallGroup(128,2000);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,352,346,2804,1411,375,172]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=a^3,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^4*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of SD167D4 in TeX

׿
×
𝔽