p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊3SD16, C42.203C23, D4⋊C8⋊21C2, Q8⋊C8⋊25C2, C4⋊C4.294D4, (C2×D4).26D4, C4.4D8⋊6C2, Q8⋊Q8⋊31C2, C4.82(C4○D8), C4.D8⋊13C2, (C4×C8).24C22, Q8⋊6D4.3C2, (C2×Q8).200D4, C4.32(C2×SD16), C4⋊Q8.23C22, D4.D4⋊31C2, C4⋊C8.166C22, C4.64(C8⋊C22), (C4×D4).33C22, (C4×Q8).33C22, C2.20(D4⋊D4), C4⋊1D4.20C22, C2.15(D4.9D4), C22.169C22≀C2, C2.15(C22⋊SD16), (C2×C4).960(C2×D4), SmallGroup(128,374)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊3SD16
G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=cac-1=a-1, ad=da, cbc-1=ab, dbd=a2b, dcd=c3 >
Subgroups: 328 in 125 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C4×D4, C4×D4, C4×Q8, C4⋊D4, C4⋊1D4, C4⋊1D4, C4⋊Q8, C2×SD16, C2×C4○D4, D4⋊C8, Q8⋊C8, C4.D8, D4.D4, Q8⋊Q8, C4.4D8, Q8⋊6D4, Q8⋊3SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C4○D8, C8⋊C22, D4⋊D4, C22⋊SD16, D4.9D4, Q8⋊3SD16
Character table of Q8⋊3SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | -2 | 0 | -2 | 2 | 2 | -2 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | -2 | 2 | 2 | -2 | 0 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | -√-2 | √-2 | 0 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | √-2 | -√-2 | 0 | complex lifted from C4○D8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | -√-2 | √-2 | 0 | complex lifted from C4○D8 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | √-2 | -√-2 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | √-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
(1 51 64 28)(2 29 57 52)(3 53 58 30)(4 31 59 54)(5 55 60 32)(6 25 61 56)(7 49 62 26)(8 27 63 50)(9 42 37 17)(10 18 38 43)(11 44 39 19)(12 20 40 45)(13 46 33 21)(14 22 34 47)(15 48 35 23)(16 24 36 41)
(1 12 64 40)(2 46 57 21)(3 14 58 34)(4 48 59 23)(5 16 60 36)(6 42 61 17)(7 10 62 38)(8 44 63 19)(9 56 37 25)(11 50 39 27)(13 52 33 29)(15 54 35 31)(18 49 43 26)(20 51 45 28)(22 53 47 30)(24 55 41 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 47)(2 42)(3 45)(4 48)(5 43)(6 46)(7 41)(8 44)(9 52)(10 55)(11 50)(12 53)(13 56)(14 51)(15 54)(16 49)(17 57)(18 60)(19 63)(20 58)(21 61)(22 64)(23 59)(24 62)(25 33)(26 36)(27 39)(28 34)(29 37)(30 40)(31 35)(32 38)
G:=sub<Sym(64)| (1,51,64,28)(2,29,57,52)(3,53,58,30)(4,31,59,54)(5,55,60,32)(6,25,61,56)(7,49,62,26)(8,27,63,50)(9,42,37,17)(10,18,38,43)(11,44,39,19)(12,20,40,45)(13,46,33,21)(14,22,34,47)(15,48,35,23)(16,24,36,41), (1,12,64,40)(2,46,57,21)(3,14,58,34)(4,48,59,23)(5,16,60,36)(6,42,61,17)(7,10,62,38)(8,44,63,19)(9,56,37,25)(11,50,39,27)(13,52,33,29)(15,54,35,31)(18,49,43,26)(20,51,45,28)(22,53,47,30)(24,55,41,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47)(2,42)(3,45)(4,48)(5,43)(6,46)(7,41)(8,44)(9,52)(10,55)(11,50)(12,53)(13,56)(14,51)(15,54)(16,49)(17,57)(18,60)(19,63)(20,58)(21,61)(22,64)(23,59)(24,62)(25,33)(26,36)(27,39)(28,34)(29,37)(30,40)(31,35)(32,38)>;
G:=Group( (1,51,64,28)(2,29,57,52)(3,53,58,30)(4,31,59,54)(5,55,60,32)(6,25,61,56)(7,49,62,26)(8,27,63,50)(9,42,37,17)(10,18,38,43)(11,44,39,19)(12,20,40,45)(13,46,33,21)(14,22,34,47)(15,48,35,23)(16,24,36,41), (1,12,64,40)(2,46,57,21)(3,14,58,34)(4,48,59,23)(5,16,60,36)(6,42,61,17)(7,10,62,38)(8,44,63,19)(9,56,37,25)(11,50,39,27)(13,52,33,29)(15,54,35,31)(18,49,43,26)(20,51,45,28)(22,53,47,30)(24,55,41,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47)(2,42)(3,45)(4,48)(5,43)(6,46)(7,41)(8,44)(9,52)(10,55)(11,50)(12,53)(13,56)(14,51)(15,54)(16,49)(17,57)(18,60)(19,63)(20,58)(21,61)(22,64)(23,59)(24,62)(25,33)(26,36)(27,39)(28,34)(29,37)(30,40)(31,35)(32,38) );
G=PermutationGroup([[(1,51,64,28),(2,29,57,52),(3,53,58,30),(4,31,59,54),(5,55,60,32),(6,25,61,56),(7,49,62,26),(8,27,63,50),(9,42,37,17),(10,18,38,43),(11,44,39,19),(12,20,40,45),(13,46,33,21),(14,22,34,47),(15,48,35,23),(16,24,36,41)], [(1,12,64,40),(2,46,57,21),(3,14,58,34),(4,48,59,23),(5,16,60,36),(6,42,61,17),(7,10,62,38),(8,44,63,19),(9,56,37,25),(11,50,39,27),(13,52,33,29),(15,54,35,31),(18,49,43,26),(20,51,45,28),(22,53,47,30),(24,55,41,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,47),(2,42),(3,45),(4,48),(5,43),(6,46),(7,41),(8,44),(9,52),(10,55),(11,50),(12,53),(13,56),(14,51),(15,54),(16,49),(17,57),(18,60),(19,63),(20,58),(21,61),(22,64),(23,59),(24,62),(25,33),(26,36),(27,39),(28,34),(29,37),(30,40),(31,35),(32,38)]])
Matrix representation of Q8⋊3SD16 ►in GL4(𝔽17) generated by
1 | 15 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
13 | 0 | 0 | 0 |
13 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
10 | 7 | 0 | 0 |
5 | 7 | 0 | 0 |
0 | 0 | 0 | 10 |
0 | 0 | 12 | 10 |
13 | 8 | 0 | 0 |
13 | 4 | 0 | 0 |
0 | 0 | 1 | 15 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [1,1,0,0,15,16,0,0,0,0,1,0,0,0,0,1],[13,13,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[10,5,0,0,7,7,0,0,0,0,0,12,0,0,10,10],[13,13,0,0,8,4,0,0,0,0,1,0,0,0,15,16] >;
Q8⋊3SD16 in GAP, Magma, Sage, TeX
Q_8\rtimes_3{\rm SD}_{16}
% in TeX
G:=Group("Q8:3SD16");
// GroupNames label
G:=SmallGroup(128,374);
// by ID
G=gap.SmallGroup(128,374);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,422,520,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a*b,d*b*d=a^2*b,d*c*d=c^3>;
// generators/relations
Export