Extensions 1→N→G→Q→1 with N=C4 and Q=M4(2)

Direct product G=N×Q with N=C4 and Q=M4(2)
dρLabelID
C4×M4(2)32C4xM4(2)64,85

Semidirect products G=N:Q with N=C4 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C41M4(2) = C86D4φ: M4(2)/C8C2 ⊆ Aut C432C4:1M4(2)64,117
C42M4(2) = C4⋊M4(2)φ: M4(2)/C2×C4C2 ⊆ Aut C432C4:2M4(2)64,104

Non-split extensions G=N.Q with N=C4 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C4.1M4(2) = D4⋊C8φ: M4(2)/C8C2 ⊆ Aut C432C4.1M4(2)64,6
C4.2M4(2) = Q8⋊C8φ: M4(2)/C8C2 ⊆ Aut C464C4.2M4(2)64,7
C4.3M4(2) = C84Q8φ: M4(2)/C8C2 ⊆ Aut C464C4.3M4(2)64,127
C4.4M4(2) = C82C8φ: M4(2)/C2×C4C2 ⊆ Aut C464C4.4M4(2)64,15
C4.5M4(2) = C81C8φ: M4(2)/C2×C4C2 ⊆ Aut C464C4.5M4(2)64,16
C4.6M4(2) = C16⋊C4φ: M4(2)/C2×C4C2 ⊆ Aut C4164C4.6M4(2)64,28
C4.7M4(2) = C23.C8φ: M4(2)/C2×C4C2 ⊆ Aut C4164C4.7M4(2)64,30
C4.8M4(2) = C42.6C4φ: M4(2)/C2×C4C2 ⊆ Aut C432C4.8M4(2)64,113
C4.9M4(2) = C8⋊C8central extension (φ=1)64C4.9M4(2)64,3
C4.10M4(2) = C22⋊C16central extension (φ=1)32C4.10M4(2)64,29
C4.11M4(2) = C4⋊C16central extension (φ=1)64C4.11M4(2)64,44
C4.12M4(2) = C42.12C4central extension (φ=1)32C4.12M4(2)64,112

׿
×
𝔽