Copied to
clipboard

G = C8⋊C8order 64 = 26

3rd semidirect product of C8 and C8 acting via C8/C4=C2

p-group, metacyclic, nilpotent (class 2), monomial

Aliases: C83C8, C4.9M4(2), C22.6C42, C42.91C22, (C2×C8).4C4, C2.1(C4×C8), C4.11(C2×C8), (C4×C8).13C2, C2.1(C8⋊C4), (C2×C4).78(C2×C4), SmallGroup(64,3)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C8⋊C8
C1C2C22C2×C4C42C4×C8 — C8⋊C8
C1C2 — C8⋊C8
C1C42 — C8⋊C8
C1C22C22C42 — C8⋊C8

Generators and relations for C8⋊C8
 G = < a,b | a8=b8=1, bab-1=a5 >

2C8
2C8
2C8
2C8

Smallest permutation representation of C8⋊C8
Regular action on 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 17 46 39 25 56 9)(2 60 18 43 40 30 49 14)(3 57 19 48 33 27 50 11)(4 62 20 45 34 32 51 16)(5 59 21 42 35 29 52 13)(6 64 22 47 36 26 53 10)(7 61 23 44 37 31 54 15)(8 58 24 41 38 28 55 12)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,17,46,39,25,56,9)(2,60,18,43,40,30,49,14)(3,57,19,48,33,27,50,11)(4,62,20,45,34,32,51,16)(5,59,21,42,35,29,52,13)(6,64,22,47,36,26,53,10)(7,61,23,44,37,31,54,15)(8,58,24,41,38,28,55,12)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,17,46,39,25,56,9)(2,60,18,43,40,30,49,14)(3,57,19,48,33,27,50,11)(4,62,20,45,34,32,51,16)(5,59,21,42,35,29,52,13)(6,64,22,47,36,26,53,10)(7,61,23,44,37,31,54,15)(8,58,24,41,38,28,55,12) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,17,46,39,25,56,9),(2,60,18,43,40,30,49,14),(3,57,19,48,33,27,50,11),(4,62,20,45,34,32,51,16),(5,59,21,42,35,29,52,13),(6,64,22,47,36,26,53,10),(7,61,23,44,37,31,54,15),(8,58,24,41,38,28,55,12)]])

C8⋊C8 is a maximal subgroup of
C8×M4(2)  C82⋊C2  C89M4(2)  C23.27C42  C822C2  C86M4(2)  SD16⋊C8  Q165C8  D85C8  C89D8  C812SD16  C815SD16  C89Q16  D4.M4(2)  D42M4(2)  Q8.M4(2)  Q82M4(2)  C8⋊M4(2)  C83M4(2)  C85SD16  C86SD16  C8.9SD16  C42.664C23  C42.665C23  C42.666C23  C42.667C23  C83D8  C8.2D8  C83Q16
 C8p⋊C8: C16⋊C8  C24⋊C8  C408C8  C40⋊C8  C56⋊C8 ...
 C4p.M4(2): C8.32D8  C8215C2  C8.M4(2)  C42.279D6  C42.279D10  C20.31M4(2)  C42.279D14 ...
C8⋊C8 is a maximal quotient of
C8⋊C16  C20.31M4(2)
 C8p⋊C8: C16⋊C8  C24⋊C8  C408C8  C40⋊C8  C56⋊C8 ...
 C42.D2p: C2.C82  C42.279D6  C42.279D10  C42.279D14 ...

40 conjugacy classes

class 1 2A2B2C4A···4L8A···8X
order12224···48···8
size11111···12···2

40 irreducible representations

dim11112
type++
imageC1C2C4C8M4(2)
kernelC8⋊C8C4×C8C2×C8C8C4
# reps1312168

Matrix representation of C8⋊C8 in GL3(𝔽17) generated by

100
0515
0612
,
200
010
0516
G:=sub<GL(3,GF(17))| [1,0,0,0,5,6,0,15,12],[2,0,0,0,1,5,0,0,16] >;

C8⋊C8 in GAP, Magma, Sage, TeX

C_8\rtimes C_8
% in TeX

G:=Group("C8:C8");
// GroupNames label

G:=SmallGroup(64,3);
// by ID

G=gap.SmallGroup(64,3);
# by ID

G:=PCGroup([6,-2,2,-2,2,-2,2,24,217,55,86,117]);
// Polycyclic

G:=Group<a,b|a^8=b^8=1,b*a*b^-1=a^5>;
// generators/relations

Export

Subgroup lattice of C8⋊C8 in TeX

׿
×
𝔽