Copied to
clipboard

G = Q8⋊C8order 64 = 26

The semidirect product of Q8 and C8 acting via C8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8⋊C8, C4.8Q16, C4.14SD16, C4.2M4(2), C42.63C22, C2.2C4≀C2, C4⋊C4.4C4, C4⋊C8.1C2, C4.2(C2×C8), (C4×C8).1C2, (C2×Q8).4C4, (C4×Q8).1C2, (C2×C4).137D4, C2.6(C22⋊C8), C2.1(Q8⋊C4), C22.22(C22⋊C4), (C2×C4).38(C2×C4), SmallGroup(64,7)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — Q8⋊C8
C1C2C22C2×C4C42C4×Q8 — Q8⋊C8
C1C2C4 — Q8⋊C8
C1C2×C4C42 — Q8⋊C8
C1C22C22C42 — Q8⋊C8

Generators and relations for Q8⋊C8
 G = < a,b,c | a4=c8=1, b2=a2, bab-1=cac-1=a-1, cbc-1=a-1b >

2C4
2C4
2C4
4C4
2C8
2C8
2Q8
2C2×C4
2C2×C4
4C8
2C2×C8
2C2×C8
2C4⋊C4
2C42

Character table of Q8⋊C8

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J4K4L8A8B8C8D8E8F8G8H8I8J8K8L
 size 1111111122224444222222224444
ρ11111111111111111111111111111    trivial
ρ2111111111111-1-1-1-111111111-1-1-1-1    linear of order 2
ρ3111111111111-1-1-1-1-1-1-1-1-1-1-1-11111    linear of order 2
ρ41111111111111111-1-1-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ51111-1-1-1-1-111-1-11-11-iiiii-i-i-iii-i-i    linear of order 4
ρ61111-1-1-1-1-111-1-11-11i-i-i-i-iiii-i-iii    linear of order 4
ρ71111-1-1-1-1-111-11-11-1i-i-i-i-iiiiii-i-i    linear of order 4
ρ81111-1-1-1-1-111-11-11-1-iiiii-i-i-i-i-iii    linear of order 4
ρ91-11-1-ii-iii1-1-i-1i1-iζ87ζ85ζ8ζ85ζ8ζ87ζ83ζ83ζ87ζ83ζ8ζ85    linear of order 8
ρ101-11-1-ii-iii1-1-i-1i1-iζ83ζ8ζ85ζ8ζ85ζ83ζ87ζ87ζ83ζ87ζ85ζ8    linear of order 8
ρ111-11-1-ii-iii1-1-i1-i-1iζ83ζ8ζ85ζ8ζ85ζ83ζ87ζ87ζ87ζ83ζ8ζ85    linear of order 8
ρ121-11-1-ii-iii1-1-i1-i-1iζ87ζ85ζ8ζ85ζ8ζ87ζ83ζ83ζ83ζ87ζ85ζ8    linear of order 8
ρ131-11-1i-ii-i-i1-1i1i-1-iζ85ζ87ζ83ζ87ζ83ζ85ζ8ζ8ζ8ζ85ζ87ζ83    linear of order 8
ρ141-11-1i-ii-i-i1-1i-1-i1iζ85ζ87ζ83ζ87ζ83ζ85ζ8ζ8ζ85ζ8ζ83ζ87    linear of order 8
ρ151-11-1i-ii-i-i1-1i-1-i1iζ8ζ83ζ87ζ83ζ87ζ8ζ85ζ85ζ8ζ85ζ87ζ83    linear of order 8
ρ161-11-1i-ii-i-i1-1i1i-1-iζ8ζ83ζ87ζ83ζ87ζ8ζ85ζ85ζ85ζ8ζ83ζ87    linear of order 8
ρ1722222222-2-2-2-20000000000000000    orthogonal lifted from D4
ρ182222-2-2-2-22-2-220000000000000000    orthogonal lifted from D4
ρ192-2-222-2-2200000000-2-222-22-220000    symplectic lifted from Q16, Schur index 2
ρ202-2-222-2-220000000022-2-22-22-20000    symplectic lifted from Q16, Schur index 2
ρ2122-2-2-2i-2i2i2i000000001-i-1-i-1-i1+i1+i-1+i-1+i1-i0000    complex lifted from C4≀C2
ρ2222-2-2-2i-2i2i2i00000000-1+i1+i1+i-1-i-1-i1-i1-i-1+i0000    complex lifted from C4≀C2
ρ232-22-22i-2i2i-2i2i-22-2i0000000000000000    complex lifted from M4(2)
ρ242-22-2-2i2i-2i2i-2i-222i0000000000000000    complex lifted from M4(2)
ρ2522-2-22i2i-2i-2i000000001+i-1+i-1+i1-i1-i-1-i-1-i1+i0000    complex lifted from C4≀C2
ρ262-2-22-222-200000000-2--2-2-2--2--2-2--20000    complex lifted from SD16
ρ2722-2-22i2i-2i-2i00000000-1-i1-i1-i-1+i-1+i1+i1+i-1-i0000    complex lifted from C4≀C2
ρ282-2-22-222-200000000--2-2--2--2-2-2--2-20000    complex lifted from SD16

Smallest permutation representation of Q8⋊C8
Regular action on 64 points
Generators in S64
(1 31 55 16)(2 9 56 32)(3 25 49 10)(4 11 50 26)(5 27 51 12)(6 13 52 28)(7 29 53 14)(8 15 54 30)(17 59 33 42)(18 43 34 60)(19 61 35 44)(20 45 36 62)(21 63 37 46)(22 47 38 64)(23 57 39 48)(24 41 40 58)
(1 59 55 42)(2 34 56 18)(3 61 49 44)(4 36 50 20)(5 63 51 46)(6 38 52 22)(7 57 53 48)(8 40 54 24)(9 43 32 60)(10 35 25 19)(11 45 26 62)(12 37 27 21)(13 47 28 64)(14 39 29 23)(15 41 30 58)(16 33 31 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,31,55,16)(2,9,56,32)(3,25,49,10)(4,11,50,26)(5,27,51,12)(6,13,52,28)(7,29,53,14)(8,15,54,30)(17,59,33,42)(18,43,34,60)(19,61,35,44)(20,45,36,62)(21,63,37,46)(22,47,38,64)(23,57,39,48)(24,41,40,58), (1,59,55,42)(2,34,56,18)(3,61,49,44)(4,36,50,20)(5,63,51,46)(6,38,52,22)(7,57,53,48)(8,40,54,24)(9,43,32,60)(10,35,25,19)(11,45,26,62)(12,37,27,21)(13,47,28,64)(14,39,29,23)(15,41,30,58)(16,33,31,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;

G:=Group( (1,31,55,16)(2,9,56,32)(3,25,49,10)(4,11,50,26)(5,27,51,12)(6,13,52,28)(7,29,53,14)(8,15,54,30)(17,59,33,42)(18,43,34,60)(19,61,35,44)(20,45,36,62)(21,63,37,46)(22,47,38,64)(23,57,39,48)(24,41,40,58), (1,59,55,42)(2,34,56,18)(3,61,49,44)(4,36,50,20)(5,63,51,46)(6,38,52,22)(7,57,53,48)(8,40,54,24)(9,43,32,60)(10,35,25,19)(11,45,26,62)(12,37,27,21)(13,47,28,64)(14,39,29,23)(15,41,30,58)(16,33,31,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,31,55,16),(2,9,56,32),(3,25,49,10),(4,11,50,26),(5,27,51,12),(6,13,52,28),(7,29,53,14),(8,15,54,30),(17,59,33,42),(18,43,34,60),(19,61,35,44),(20,45,36,62),(21,63,37,46),(22,47,38,64),(23,57,39,48),(24,41,40,58)], [(1,59,55,42),(2,34,56,18),(3,61,49,44),(4,36,50,20),(5,63,51,46),(6,38,52,22),(7,57,53,48),(8,40,54,24),(9,43,32,60),(10,35,25,19),(11,45,26,62),(12,37,27,21),(13,47,28,64),(14,39,29,23),(15,41,30,58),(16,33,31,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])

Q8⋊C8 is a maximal subgroup of
C42.455D4  C42.397D4  C42.399D4  C42.46D4  C42.373D4  C42.47D4  C42.401D4  Q8⋊M4(2)  C42.374D4  D44M4(2)  Q85M4(2)  C42.316D4  C42.305D4  C42.52D4  C42.54D4  C8×SD16  C8×Q16  SD16⋊C8  Q165C8  C812SD16  C815SD16  C89Q16  D4.M4(2)  Q8.M4(2)  Q82M4(2)  C89SD16  C8⋊M4(2)  C42.181C23  Q8⋊D8  D4⋊SD16  Q8⋊SD16  Q86SD16  Q83D8  C42.189C23  C42.191C23  Q82SD16  D4⋊Q16  Q8⋊Q16  Q8.Q16  D4.3Q16  C42.199C23  C42.201C23  Q8.D8  Q83SD16  D4.5SD16  D43Q16  Q83Q16  Q84Q16  D44Q16  C42.211C23  Q84SD16  C42.213C23  Q8.SD16  C2.U2(𝔽3)
 C4p.M4(2): C86Q16  C8.M4(2)  C4.8Dic12  Dic62C8  C12.26Q16  Dic103C8  Dic104C8  C20.26Q16 ...
Q8⋊C8 is a maximal quotient of
C4⋊C4⋊C8  (C2×Q8)⋊C8  C42.46Q8  Dic101C8  Dic5.12Q16
 C4p.Q16: Q8⋊C16  C8.17Q16  C4.8Dic12  Dic62C8  C12.26Q16  Dic103C8  Dic104C8  C20.26Q16 ...

Matrix representation of Q8⋊C8 in GL3(𝔽17) generated by

100
001
0160
,
1600
0167
071
,
1500
0411
01113
G:=sub<GL(3,GF(17))| [1,0,0,0,0,16,0,1,0],[16,0,0,0,16,7,0,7,1],[15,0,0,0,4,11,0,11,13] >;

Q8⋊C8 in GAP, Magma, Sage, TeX

Q_8\rtimes C_8
% in TeX

G:=Group("Q8:C8");
// GroupNames label

G:=SmallGroup(64,7);
// by ID

G=gap.SmallGroup(64,7);
# by ID

G:=PCGroup([6,-2,2,-2,2,-2,2,48,73,103,362,188,86,117]);
// Polycyclic

G:=Group<a,b,c|a^4=c^8=1,b^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^-1*b>;
// generators/relations

Export

Subgroup lattice of Q8⋊C8 in TeX
Character table of Q8⋊C8 in TeX

׿
×
𝔽