direct product, metabelian, supersoluble, monomial, A-group
Aliases: S3×D15, C3⋊1D30, C15⋊2D6, C32⋊1D10, C5⋊1S32, (C5×S3)⋊S3, (C3×S3)⋊D5, C3⋊1(S3×D5), C3⋊D15⋊2C2, (S3×C15)⋊1C2, (C3×D15)⋊2C2, (C3×C15)⋊3C22, SmallGroup(180,29)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C15 — S3×D15 |
Generators and relations for S3×D15
G = < a,b,c,d | a3=b2=c15=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of S3×D15
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 5A | 5B | 6A | 6B | 10A | 10B | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | 15I | 15J | 30A | 30B | 30C | 30D | |
size | 1 | 3 | 15 | 45 | 2 | 2 | 4 | 2 | 2 | 6 | 30 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 0 | -2 | 0 | 2 | -1 | -1 | 2 | 2 | 0 | 1 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | -1 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | 1 | 0 | -2 | -2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | 0 | 2 | 0 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -2 | 0 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 2 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -2 | 0 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 2 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ13 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1+√5/2 | -1-√5/2 | 1 | 0 | 1-√5/2 | 1+√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ54-ζ3ζ5-ζ5 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ53-ζ3ζ52-ζ52 | -1-√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ54-ζ3ζ5-ζ5 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ53-ζ3ζ52-ζ52 | -1+√5/2 | -ζ3ζ53+ζ3ζ52+ζ52 | ζ3ζ53-ζ3ζ52+ζ53 | ζ32ζ54-ζ32ζ5+ζ54 | ζ3ζ54-ζ3ζ5+ζ54 | orthogonal lifted from D30 |
ρ14 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1+√5/2 | -1-√5/2 | 1 | 0 | 1-√5/2 | 1+√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ54-ζ3ζ5-ζ5 | -ζ3ζ53+ζ3ζ52-ζ53 | -1-√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ54-ζ3ζ5-ζ5 | -ζ3ζ53+ζ3ζ52-ζ53 | -1+√5/2 | ζ3ζ53-ζ3ζ52+ζ53 | -ζ3ζ53+ζ3ζ52+ζ52 | ζ3ζ54-ζ3ζ5+ζ54 | ζ32ζ54-ζ32ζ5+ζ54 | orthogonal lifted from D30 |
ρ15 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1+√5/2 | -1-√5/2 | -1 | 0 | -1+√5/2 | -1-√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ54-ζ3ζ5-ζ5 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ53-ζ3ζ52-ζ52 | -1-√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ54-ζ3ζ5-ζ5 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ53-ζ3ζ52-ζ52 | -1+√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ54-ζ3ζ5-ζ5 | ζ32ζ54-ζ32ζ5-ζ5 | orthogonal lifted from D15 |
ρ16 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1+√5/2 | -1-√5/2 | -1 | 0 | -1+√5/2 | -1-√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ54-ζ3ζ5-ζ5 | -ζ3ζ53+ζ3ζ52-ζ53 | -1-√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ54-ζ3ζ5-ζ5 | -ζ3ζ53+ζ3ζ52-ζ53 | -1+√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ54-ζ3ζ5-ζ5 | orthogonal lifted from D15 |
ρ17 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1-√5/2 | -1+√5/2 | 1 | 0 | 1+√5/2 | 1-√5/2 | ζ3ζ54-ζ3ζ5-ζ5 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ32ζ54-ζ32ζ5-ζ5 | -1+√5/2 | ζ3ζ54-ζ3ζ5-ζ5 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ32ζ54-ζ32ζ5-ζ5 | -1-√5/2 | ζ3ζ54-ζ3ζ5+ζ54 | ζ32ζ54-ζ32ζ5+ζ54 | -ζ3ζ53+ζ3ζ52+ζ52 | ζ3ζ53-ζ3ζ52+ζ53 | orthogonal lifted from D30 |
ρ18 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1-√5/2 | -1+√5/2 | 1 | 0 | 1+√5/2 | 1-√5/2 | ζ32ζ54-ζ32ζ5-ζ5 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | ζ3ζ54-ζ3ζ5-ζ5 | -1+√5/2 | ζ32ζ54-ζ32ζ5-ζ5 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | ζ3ζ54-ζ3ζ5-ζ5 | -1-√5/2 | ζ32ζ54-ζ32ζ5+ζ54 | ζ3ζ54-ζ3ζ5+ζ54 | ζ3ζ53-ζ3ζ52+ζ53 | -ζ3ζ53+ζ3ζ52+ζ52 | orthogonal lifted from D30 |
ρ19 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1-√5/2 | -1+√5/2 | -1 | 0 | -1-√5/2 | -1+√5/2 | ζ3ζ54-ζ3ζ5-ζ5 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ32ζ54-ζ32ζ5-ζ5 | -1+√5/2 | ζ3ζ54-ζ3ζ5-ζ5 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ32ζ54-ζ32ζ5-ζ5 | -1-√5/2 | ζ32ζ54-ζ32ζ5-ζ5 | ζ3ζ54-ζ3ζ5-ζ5 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | orthogonal lifted from D15 |
ρ20 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1-√5/2 | -1+√5/2 | -1 | 0 | -1-√5/2 | -1+√5/2 | ζ32ζ54-ζ32ζ5-ζ5 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | ζ3ζ54-ζ3ζ5-ζ5 | -1+√5/2 | ζ32ζ54-ζ32ζ5-ζ5 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | ζ3ζ54-ζ3ζ5-ζ5 | -1-√5/2 | ζ3ζ54-ζ3ζ5-ζ5 | ζ32ζ54-ζ32ζ5-ζ5 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | orthogonal lifted from D15 |
ρ21 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ22 | 4 | 0 | 0 | 0 | 4 | -2 | -2 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | -1-√5 | -1+√5 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D5 |
ρ23 | 4 | 0 | 0 | 0 | 4 | -2 | -2 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | -1+√5 | -1-√5 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D5 |
ρ24 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | -2ζ3ζ53+2ζ3ζ52-2ζ53 | 2ζ3ζ54-2ζ3ζ5-2ζ5 | 2ζ32ζ54-2ζ32ζ5-2ζ5 | 2ζ3ζ53-2ζ3ζ52-2ζ52 | 1+√5/2 | ζ3ζ53-ζ3ζ52+ζ53 | ζ32ζ54-ζ32ζ5+ζ54 | ζ3ζ54-ζ3ζ5+ζ54 | -ζ3ζ53+ζ3ζ52+ζ52 | 1-√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 2ζ32ζ54-2ζ32ζ5-2ζ5 | -2ζ3ζ53+2ζ3ζ52-2ζ53 | 2ζ3ζ53-2ζ3ζ52-2ζ52 | 2ζ3ζ54-2ζ3ζ5-2ζ5 | 1-√5/2 | ζ3ζ54-ζ3ζ5+ζ54 | ζ3ζ53-ζ3ζ52+ζ53 | -ζ3ζ53+ζ3ζ52+ζ52 | ζ32ζ54-ζ32ζ5+ζ54 | 1+√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 2ζ3ζ53-2ζ3ζ52-2ζ52 | 2ζ32ζ54-2ζ32ζ5-2ζ5 | 2ζ3ζ54-2ζ3ζ5-2ζ5 | -2ζ3ζ53+2ζ3ζ52-2ζ53 | 1+√5/2 | -ζ3ζ53+ζ3ζ52+ζ52 | ζ3ζ54-ζ3ζ5+ζ54 | ζ32ζ54-ζ32ζ5+ζ54 | ζ3ζ53-ζ3ζ52+ζ53 | 1-√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 2ζ3ζ54-2ζ3ζ5-2ζ5 | 2ζ3ζ53-2ζ3ζ52-2ζ52 | -2ζ3ζ53+2ζ3ζ52-2ζ53 | 2ζ32ζ54-2ζ32ζ5-2ζ5 | 1-√5/2 | ζ32ζ54-ζ32ζ5+ζ54 | -ζ3ζ53+ζ3ζ52+ζ52 | ζ3ζ53-ζ3ζ52+ζ53 | ζ3ζ54-ζ3ζ5+ζ54 | 1+√5/2 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 30)(10 29)(11 28)(12 27)(13 26)(14 25)(15 24)
G:=sub<Sym(30)| (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)>;
G:=Group( (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24) );
G=PermutationGroup([[(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,30),(10,29),(11,28),(12,27),(13,26),(14,25),(15,24)]])
G:=TransitiveGroup(30,42);
S3×D15 is a maximal subgroup of
S32×D5
S3×D15 is a maximal quotient of C6.D30 D6⋊D15 C3⋊D60 D6⋊2D15 C3⋊Dic30
Matrix representation of S3×D15 ►in GL4(𝔽31) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 30 | 1 |
0 | 0 | 30 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
6 | 22 | 0 | 0 |
9 | 28 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
14 | 21 | 0 | 0 |
4 | 17 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(31))| [1,0,0,0,0,1,0,0,0,0,30,30,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[6,9,0,0,22,28,0,0,0,0,1,0,0,0,0,1],[14,4,0,0,21,17,0,0,0,0,1,0,0,0,0,1] >;
S3×D15 in GAP, Magma, Sage, TeX
S_3\times D_{15}
% in TeX
G:=Group("S3xD15");
// GroupNames label
G:=SmallGroup(180,29);
// by ID
G=gap.SmallGroup(180,29);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-5,67,483,3604]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^15=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of S3×D15 in TeX
Character table of S3×D15 in TeX