metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊2D16, D8⋊1D5, D40⋊3C2, C20.3D4, C10.8D8, C8.4D10, C40.2C22, (C5×D8)⋊1C2, C5⋊2C16⋊1C2, C2.4(D4⋊D5), C4.1(C5⋊D4), SmallGroup(160,33)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5⋊D16
G = < a,b,c | a5=b16=c2=1, bab-1=cac=a-1, cbc=b-1 >
Character table of C5⋊D16
class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 16A | 16B | 16C | 16D | 20A | 20B | 40A | 40B | 40C | 40D | |
size | 1 | 1 | 8 | 40 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 2 | 0 | 2 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | ζ167-ζ16 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D16 |
ρ9 | 2 | 2 | -2 | 0 | 2 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ10 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | -ζ165+ζ163 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D16 |
ρ11 | 2 | 2 | 2 | 0 | 2 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ12 | 2 | 2 | -2 | 0 | 2 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D16 |
ρ15 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | ζ165-ζ163 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D16 |
ρ16 | 2 | 2 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | -2 | -2 | -1-√5/2 | -1+√5/2 | ζ53-ζ52 | ζ54-ζ5 | -ζ53+ζ52 | -ζ54+ζ5 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ17 | 2 | 2 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | -2 | -2 | -1+√5/2 | -1-√5/2 | ζ54-ζ5 | -ζ53+ζ52 | -ζ54+ζ5 | ζ53-ζ52 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ18 | 2 | 2 | 0 | 0 | 2 | -1-√5/2 | -1+√5/2 | -2 | -2 | -1-√5/2 | -1+√5/2 | -ζ53+ζ52 | -ζ54+ζ5 | ζ53-ζ52 | ζ54-ζ5 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ19 | 2 | 2 | 0 | 0 | 2 | -1+√5/2 | -1-√5/2 | -2 | -2 | -1+√5/2 | -1-√5/2 | -ζ54+ζ5 | ζ53-ζ52 | ζ54-ζ5 | -ζ53+ζ52 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ20 | 4 | 4 | 0 | 0 | -4 | -1-√5 | -1+√5 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊D5, Schur index 2 |
ρ21 | 4 | 4 | 0 | 0 | -4 | -1+√5 | -1-√5 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊D5, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 0 | -1-√5 | -1+√5 | -2√2 | 2√2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | orthogonal faithful, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2√2 | -2√2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | orthogonal faithful, Schur index 2 |
ρ24 | 4 | -4 | 0 | 0 | 0 | -1+√5 | -1-√5 | -2√2 | 2√2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | orthogonal faithful, Schur index 2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2√2 | -2√2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | orthogonal faithful, Schur index 2 |
(1 63 27 44 73)(2 74 45 28 64)(3 49 29 46 75)(4 76 47 30 50)(5 51 31 48 77)(6 78 33 32 52)(7 53 17 34 79)(8 80 35 18 54)(9 55 19 36 65)(10 66 37 20 56)(11 57 21 38 67)(12 68 39 22 58)(13 59 23 40 69)(14 70 41 24 60)(15 61 25 42 71)(16 72 43 26 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 38)(18 37)(19 36)(20 35)(21 34)(22 33)(23 48)(24 47)(25 46)(26 45)(27 44)(28 43)(29 42)(30 41)(31 40)(32 39)(49 71)(50 70)(51 69)(52 68)(53 67)(54 66)(55 65)(56 80)(57 79)(58 78)(59 77)(60 76)(61 75)(62 74)(63 73)(64 72)
G:=sub<Sym(80)| (1,63,27,44,73)(2,74,45,28,64)(3,49,29,46,75)(4,76,47,30,50)(5,51,31,48,77)(6,78,33,32,52)(7,53,17,34,79)(8,80,35,18,54)(9,55,19,36,65)(10,66,37,20,56)(11,57,21,38,67)(12,68,39,22,58)(13,59,23,40,69)(14,70,41,24,60)(15,61,25,42,71)(16,72,43,26,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,38)(18,37)(19,36)(20,35)(21,34)(22,33)(23,48)(24,47)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,80)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)>;
G:=Group( (1,63,27,44,73)(2,74,45,28,64)(3,49,29,46,75)(4,76,47,30,50)(5,51,31,48,77)(6,78,33,32,52)(7,53,17,34,79)(8,80,35,18,54)(9,55,19,36,65)(10,66,37,20,56)(11,57,21,38,67)(12,68,39,22,58)(13,59,23,40,69)(14,70,41,24,60)(15,61,25,42,71)(16,72,43,26,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,38)(18,37)(19,36)(20,35)(21,34)(22,33)(23,48)(24,47)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,80)(57,79)(58,78)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72) );
G=PermutationGroup([[(1,63,27,44,73),(2,74,45,28,64),(3,49,29,46,75),(4,76,47,30,50),(5,51,31,48,77),(6,78,33,32,52),(7,53,17,34,79),(8,80,35,18,54),(9,55,19,36,65),(10,66,37,20,56),(11,57,21,38,67),(12,68,39,22,58),(13,59,23,40,69),(14,70,41,24,60),(15,61,25,42,71),(16,72,43,26,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,38),(18,37),(19,36),(20,35),(21,34),(22,33),(23,48),(24,47),(25,46),(26,45),(27,44),(28,43),(29,42),(30,41),(31,40),(32,39),(49,71),(50,70),(51,69),(52,68),(53,67),(54,66),(55,65),(56,80),(57,79),(58,78),(59,77),(60,76),(61,75),(62,74),(63,73),(64,72)]])
C5⋊D16 is a maximal subgroup of
D5×D16 D16⋊D5 C16⋊D10 SD32⋊3D5 D8.D10 D8⋊D10 C40.30C23 C15⋊D16 C5⋊D48 C15⋊7D16
C5⋊D16 is a maximal quotient of
C40.2Q8 C40.5D4 C5⋊D32 D16.D5 C5⋊SD64 C5⋊Q64 C10.D16 C15⋊D16 C5⋊D48 C15⋊7D16
Matrix representation of C5⋊D16 ►in GL4(𝔽241) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 240 | 1 |
0 | 0 | 50 | 190 |
58 | 54 | 0 | 0 |
214 | 112 | 0 | 0 |
0 | 0 | 69 | 27 |
0 | 0 | 20 | 172 |
1 | 0 | 0 | 0 |
1 | 240 | 0 | 0 |
0 | 0 | 51 | 1 |
0 | 0 | 51 | 190 |
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,240,50,0,0,1,190],[58,214,0,0,54,112,0,0,0,0,69,20,0,0,27,172],[1,1,0,0,0,240,0,0,0,0,51,51,0,0,1,190] >;
C5⋊D16 in GAP, Magma, Sage, TeX
C_5\rtimes D_{16}
% in TeX
G:=Group("C5:D16");
// GroupNames label
G:=SmallGroup(160,33);
// by ID
G=gap.SmallGroup(160,33);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,73,218,116,122,579,297,69,4613]);
// Polycyclic
G:=Group<a,b,c|a^5=b^16=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C5⋊D16 in TeX
Character table of C5⋊D16 in TeX