Copied to
clipboard

G = S3×C15order 90 = 2·32·5

Direct product of C15 and S3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3×C15, C3⋊C30, C153C6, C321C10, (C3×C15)⋊4C2, SmallGroup(90,6)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C15
C1C3C15C3×C15 — S3×C15
C3 — S3×C15
C1C15

Generators and relations for S3×C15
 G = < a,b,c | a15=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
2C3
3C6
3C10
2C15
3C30

Permutation representations of S3×C15
On 30 points - transitive group 30T15
Generators in S30
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)

G:=sub<Sym(30)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)]])

G:=TransitiveGroup(30,15);

45 conjugacy classes

class 1  2 3A3B3C3D3E5A5B5C5D6A6B10A10B10C10D15A···15H15I···15T30A···30H
order12333335555661010101015···1515···1530···30
size131122211113333331···12···23···3

45 irreducible representations

dim111111112222
type+++
imageC1C2C3C5C6C10C15C30S3C3×S3C5×S3S3×C15
kernelS3×C15C3×C15C5×S3C3×S3C15C32S3C3C15C5C3C1
# reps112424881248

Matrix representation of S3×C15 in GL2(𝔽31) generated by

100
010
,
50
025
,
01
10
G:=sub<GL(2,GF(31))| [10,0,0,10],[5,0,0,25],[0,1,1,0] >;

S3×C15 in GAP, Magma, Sage, TeX

S_3\times C_{15}
% in TeX

G:=Group("S3xC15");
// GroupNames label

G:=SmallGroup(90,6);
// by ID

G=gap.SmallGroup(90,6);
# by ID

G:=PCGroup([4,-2,-3,-5,-3,963]);
// Polycyclic

G:=Group<a,b,c|a^15=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C15 in TeX

׿
×
𝔽