# Extensions 1→N→G→Q→1 with N=C2×D12 and Q=C2

Direct product G=N×Q with N=C2×D12 and Q=C2
dρLabelID
C22×D1248C2^2xD1296,207

Semidirect products G=N:Q with N=C2×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D12)⋊1C2 = C4⋊D12φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12):1C296,81
(C2×D12)⋊2C2 = D6⋊D4φ: C2/C1C2 ⊆ Out C2×D1224(C2xD12):2C296,89
(C2×D12)⋊3C2 = Dic3⋊D4φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12):3C296,91
(C2×D12)⋊4C2 = C12⋊D4φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12):4C296,102
(C2×D12)⋊5C2 = C2×D24φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12):5C296,110
(C2×D12)⋊6C2 = C127D4φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12):6C296,137
(C2×D12)⋊7C2 = C8⋊D6φ: C2/C1C2 ⊆ Out C2×D12244+(C2xD12):7C296,115
(C2×D12)⋊8C2 = C2×D4⋊S3φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12):8C296,138
(C2×D12)⋊9C2 = C123D4φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12):9C296,147
(C2×D12)⋊10C2 = D4⋊D6φ: C2/C1C2 ⊆ Out C2×D12244+(C2xD12):10C296,156
(C2×D12)⋊11C2 = C2×S3×D4φ: C2/C1C2 ⊆ Out C2×D1224(C2xD12):11C296,209
(C2×D12)⋊12C2 = C2×Q83S3φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12):12C296,213
(C2×D12)⋊13C2 = D4○D12φ: C2/C1C2 ⊆ Out C2×D12244+(C2xD12):13C296,216
(C2×D12)⋊14C2 = C2×C4○D12φ: trivial image48(C2xD12):14C296,208

Non-split extensions G=N.Q with N=C2×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D12).1C2 = C2.D24φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12).1C296,28
(C2×D12).2C2 = C427S3φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12).2C296,82
(C2×D12).3C2 = D6.D4φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12).3C296,101
(C2×D12).4C2 = C2×C24⋊C2φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12).4C296,109
(C2×D12).5C2 = C6.D8φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12).5C296,16
(C2×D12).6C2 = C12.46D4φ: C2/C1C2 ⊆ Out C2×D12244+(C2xD12).6C296,30
(C2×D12).7C2 = Dic35D4φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12).7C296,100
(C2×D12).8C2 = C2×Q82S3φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12).8C296,148
(C2×D12).9C2 = C12.23D4φ: C2/C1C2 ⊆ Out C2×D1248(C2xD12).9C296,154
(C2×D12).10C2 = C4×D12φ: trivial image48(C2xD12).10C296,80

׿
×
𝔽