Extensions 1→N→G→Q→1 with N=C4 and Q=Dic6

Direct product G=N×Q with N=C4 and Q=Dic6

Semidirect products G=N:Q with N=C4 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C41Dic6 = C12⋊Q8φ: Dic6/Dic3C2 ⊆ Aut C496C4:1Dic696,95
C42Dic6 = C122Q8φ: Dic6/C12C2 ⊆ Aut C496C4:2Dic696,76

Non-split extensions G=N.Q with N=C4 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C4.1Dic6 = C6.Q16φ: Dic6/Dic3C2 ⊆ Aut C496C4.1Dic696,14
C4.2Dic6 = C12.Q8φ: Dic6/Dic3C2 ⊆ Aut C496C4.2Dic696,15
C4.3Dic6 = C4.Dic6φ: Dic6/Dic3C2 ⊆ Aut C496C4.3Dic696,97
C4.4Dic6 = C8⋊Dic3φ: Dic6/C12C2 ⊆ Aut C496C4.4Dic696,24
C4.5Dic6 = C241C4φ: Dic6/C12C2 ⊆ Aut C496C4.5Dic696,25
C4.6Dic6 = C12.6Q8φ: Dic6/C12C2 ⊆ Aut C496C4.6Dic696,77
C4.7Dic6 = C12⋊C8central extension (φ=1)96C4.7Dic696,11
C4.8Dic6 = Dic3⋊C8central extension (φ=1)96C4.8Dic696,21