Copied to
clipboard

G = C6.Q16order 96 = 25·3

1st non-split extension by C6 of Q16 acting via Q16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.6D8, C6.3Q16, C12.1Q8, C4.1Dic6, C3⋊C81C4, C4⋊C4.1S3, C31(C2.D8), C6.2(C4⋊C4), C4.11(C4×S3), C12.1(C2×C4), (C2×C6).28D4, (C2×C4).33D6, C2.1(D4⋊S3), C4⋊Dic3.8C2, (C2×C12).8C22, C2.1(C3⋊Q16), C2.3(Dic3⋊C4), C22.12(C3⋊D4), (C2×C3⋊C8).1C2, (C3×C4⋊C4).1C2, SmallGroup(96,14)

Series: Derived Chief Lower central Upper central

C1C12 — C6.Q16
C1C3C6C2×C6C2×C12C2×C3⋊C8 — C6.Q16
C3C6C12 — C6.Q16
C1C22C2×C4C4⋊C4

Generators and relations for C6.Q16
 G = < a,b,c | a12=b4=1, c2=a9b2, bab-1=a7, cac-1=a5, cbc-1=a9b-1 >

4C4
12C4
2C2×C4
3C8
3C8
6C2×C4
4C12
4Dic3
3C2×C8
3C4⋊C4
2C2×Dic3
2C2×C12
3C2.D8

Character table of C6.Q16

 class 12A2B2C34A4B4C4D4E4F6A6B6C8A8B8C8D12A12B12C12D12E12F
 size 11112224412122226666444444
ρ1111111111111111111111111    trivial
ρ21111111-1-1-1-11111111-1-1-111-1    linear of order 2
ρ3111111111-1-1111-1-1-1-1111111    linear of order 2
ρ41111111-1-111111-1-1-1-1-1-1-111-1    linear of order 2
ρ511-1-11-11i-i-ii-11-1-111-1i-i-i1-1i    linear of order 4
ρ611-1-11-11-iii-i-11-1-111-1-iii1-1-i    linear of order 4
ρ711-1-11-11i-ii-i-11-11-1-11i-i-i1-1i    linear of order 4
ρ811-1-11-11-ii-ii-11-11-1-11-iii1-1-i    linear of order 4
ρ92222-1222200-1-1-10000-1-1-1-1-1-1    orthogonal lifted from S3
ρ102222-122-2-200-1-1-10000111-1-11    orthogonal lifted from D6
ρ1122222-2-200002220000000-2-20    orthogonal lifted from D4
ρ122-22-22000000-2-222-22-2000000    orthogonal lifted from D8
ρ132-22-22000000-2-22-22-22000000    orthogonal lifted from D8
ρ1422-2-222-20000-22-20000000-220    symplectic lifted from Q8, Schur index 2
ρ152-2-2220000002-2-2-2-222000000    symplectic lifted from Q16, Schur index 2
ρ162-2-2220000002-2-222-2-2000000    symplectic lifted from Q16, Schur index 2
ρ1722-2-2-12-200001-110000-3-331-13    symplectic lifted from Dic6, Schur index 2
ρ1822-2-2-12-200001-11000033-31-1-3    symplectic lifted from Dic6, Schur index 2
ρ1922-2-2-1-222i-2i001-110000-iii-11-i    complex lifted from C4×S3
ρ2022-2-2-1-22-2i2i001-110000i-i-i-11i    complex lifted from C4×S3
ρ212222-1-2-20000-1-1-10000-3--3-311--3    complex lifted from C3⋊D4
ρ222222-1-2-20000-1-1-10000--3-3--311-3    complex lifted from C3⋊D4
ρ234-44-4-200000022-20000000000    orthogonal lifted from D4⋊S3, Schur index 2
ρ244-4-44-2000000-2220000000000    symplectic lifted from C3⋊Q16, Schur index 2

Smallest permutation representation of C6.Q16
Regular action on 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 71 58 27)(2 66 59 34)(3 61 60 29)(4 68 49 36)(5 63 50 31)(6 70 51 26)(7 65 52 33)(8 72 53 28)(9 67 54 35)(10 62 55 30)(11 69 56 25)(12 64 57 32)(13 46 92 74)(14 41 93 81)(15 48 94 76)(16 43 95 83)(17 38 96 78)(18 45 85 73)(19 40 86 80)(20 47 87 75)(21 42 88 82)(22 37 89 77)(23 44 90 84)(24 39 91 79)
(1 13 55 89 7 19 49 95)(2 18 56 94 8 24 50 88)(3 23 57 87 9 17 51 93)(4 16 58 92 10 22 52 86)(5 21 59 85 11 15 53 91)(6 14 60 90 12 20 54 96)(25 45 66 82 31 39 72 76)(26 38 67 75 32 44 61 81)(27 43 68 80 33 37 62 74)(28 48 69 73 34 42 63 79)(29 41 70 78 35 47 64 84)(30 46 71 83 36 40 65 77)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,71,58,27)(2,66,59,34)(3,61,60,29)(4,68,49,36)(5,63,50,31)(6,70,51,26)(7,65,52,33)(8,72,53,28)(9,67,54,35)(10,62,55,30)(11,69,56,25)(12,64,57,32)(13,46,92,74)(14,41,93,81)(15,48,94,76)(16,43,95,83)(17,38,96,78)(18,45,85,73)(19,40,86,80)(20,47,87,75)(21,42,88,82)(22,37,89,77)(23,44,90,84)(24,39,91,79), (1,13,55,89,7,19,49,95)(2,18,56,94,8,24,50,88)(3,23,57,87,9,17,51,93)(4,16,58,92,10,22,52,86)(5,21,59,85,11,15,53,91)(6,14,60,90,12,20,54,96)(25,45,66,82,31,39,72,76)(26,38,67,75,32,44,61,81)(27,43,68,80,33,37,62,74)(28,48,69,73,34,42,63,79)(29,41,70,78,35,47,64,84)(30,46,71,83,36,40,65,77)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,71,58,27)(2,66,59,34)(3,61,60,29)(4,68,49,36)(5,63,50,31)(6,70,51,26)(7,65,52,33)(8,72,53,28)(9,67,54,35)(10,62,55,30)(11,69,56,25)(12,64,57,32)(13,46,92,74)(14,41,93,81)(15,48,94,76)(16,43,95,83)(17,38,96,78)(18,45,85,73)(19,40,86,80)(20,47,87,75)(21,42,88,82)(22,37,89,77)(23,44,90,84)(24,39,91,79), (1,13,55,89,7,19,49,95)(2,18,56,94,8,24,50,88)(3,23,57,87,9,17,51,93)(4,16,58,92,10,22,52,86)(5,21,59,85,11,15,53,91)(6,14,60,90,12,20,54,96)(25,45,66,82,31,39,72,76)(26,38,67,75,32,44,61,81)(27,43,68,80,33,37,62,74)(28,48,69,73,34,42,63,79)(29,41,70,78,35,47,64,84)(30,46,71,83,36,40,65,77) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,71,58,27),(2,66,59,34),(3,61,60,29),(4,68,49,36),(5,63,50,31),(6,70,51,26),(7,65,52,33),(8,72,53,28),(9,67,54,35),(10,62,55,30),(11,69,56,25),(12,64,57,32),(13,46,92,74),(14,41,93,81),(15,48,94,76),(16,43,95,83),(17,38,96,78),(18,45,85,73),(19,40,86,80),(20,47,87,75),(21,42,88,82),(22,37,89,77),(23,44,90,84),(24,39,91,79)], [(1,13,55,89,7,19,49,95),(2,18,56,94,8,24,50,88),(3,23,57,87,9,17,51,93),(4,16,58,92,10,22,52,86),(5,21,59,85,11,15,53,91),(6,14,60,90,12,20,54,96),(25,45,66,82,31,39,72,76),(26,38,67,75,32,44,61,81),(27,43,68,80,33,37,62,74),(28,48,69,73,34,42,63,79),(29,41,70,78,35,47,64,84),(30,46,71,83,36,40,65,77)]])

C6.Q16 is a maximal subgroup of
Dic34D8  D4.S3⋊C4  Dic3.D8  D4.Dic6  D6.D8  D6⋊D8  D6⋊C811C2  C3⋊C81D4  Dic34Q16  Q83Dic6  Q8.4Dic6  D6.Q16  C3⋊(C8⋊D4)  D61Q16  C8⋊Dic3⋊C2  Q83(C4×S3)  C243Q8  Dic6.Q8  C8.8Dic6  (S3×C8)⋊C4  C8⋊(C4×S3)  C4.Q8⋊S3  C6.(C4○D8)  D12.Q8  C242Q8  Dic3.Q16  C244Q8  S3×C2.D8  C8⋊S3⋊C4  D6.5D8  D6.2Q16  D122Q8  C4⋊C4.225D6  (C2×C6).40D8  C4⋊C4.230D6  C4⋊C4.232D6  C4⋊C4.233D6  C4⋊C4.234D6  C4⋊C4.236D6  C12.50D8  D4.3Dic6  C4×D4⋊S3  C42.51D6  Q85Dic6  Q8.5Dic6  C42.56D6  C4×C3⋊Q16  (C2×C6).D8  C6.Q16⋊C2  C3⋊C822D4  C3⋊C85D4  (C2×C6).Q16  (C2×Q8).51D6  C3⋊C86D4  C3⋊C8.29D4  Dic6.4Q8  C42.68D6  C42.215D6  D12.4Q8  C12.17D8  C42.76D6  D126Q8  Dic65Q8  C36.Q8  C6.18D24  C12.8Dic6  C12.9Dic6  C30.20D8  C60.5Q8  C60.1Q8  Dic5.4Dic6
C6.Q16 is a maximal quotient of
C12.53D8  C6.6D16  C6.SD32  C24.7Q8  C12.C42  C36.Q8  C6.18D24  C12.8Dic6  C12.9Dic6  C30.20D8  C60.5Q8  C60.1Q8  Dic5.4Dic6

Matrix representation of C6.Q16 in GL4(𝔽73) generated by

0100
727200
00722
00721
,
71400
596600
003641
002037
,
603000
431300
003241
00160
G:=sub<GL(4,GF(73))| [0,72,0,0,1,72,0,0,0,0,72,72,0,0,2,1],[7,59,0,0,14,66,0,0,0,0,36,20,0,0,41,37],[60,43,0,0,30,13,0,0,0,0,32,16,0,0,41,0] >;

C6.Q16 in GAP, Magma, Sage, TeX

C_6.Q_{16}
% in TeX

G:=Group("C6.Q16");
// GroupNames label

G:=SmallGroup(96,14);
// by ID

G=gap.SmallGroup(96,14);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,48,121,31,297,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=1,c^2=a^9*b^2,b*a*b^-1=a^7,c*a*c^-1=a^5,c*b*c^-1=a^9*b^-1>;
// generators/relations

Export

Subgroup lattice of C6.Q16 in TeX
Character table of C6.Q16 in TeX

׿
×
𝔽