metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.2Q8, C6.4SD16, C4.2Dic6, C3⋊C8⋊2C4, C4⋊C4.2S3, C3⋊1(C4.Q8), C6.3(C4⋊C4), C4.12(C4×S3), C12.2(C2×C4), (C2×C4).34D6, (C2×C6).29D4, C4⋊Dic3.9C2, C2.1(D4.S3), (C2×C12).9C22, C2.4(Dic3⋊C4), C2.1(Q8⋊2S3), C22.13(C3⋊D4), (C2×C3⋊C8).2C2, (C3×C4⋊C4).2C2, SmallGroup(96,15)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C4 — C4⋊C4 |
Generators and relations for C12.Q8
G = < a,b,c | a4=b12=1, c2=ab6, bab-1=a-1, ac=ca, cbc-1=a-1b-1 >
Character table of C12.Q8
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | -i | 1 | -1 | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | i | 1 | -1 | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -1 | 1 | -1 | 1 | -1 | -1 | 1 | i | -i | -i | 1 | -1 | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | i | i | 1 | -1 | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ13 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -√3 | -√3 | √3 | 1 | -1 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | √3 | √3 | -√3 | 1 | -1 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 2i | -2i | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -i | i | i | -1 | 1 | -i | complex lifted from C4×S3 |
ρ16 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | -2i | 2i | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | i | -i | -i | -1 | 1 | i | complex lifted from C4×S3 |
ρ17 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | √-3 | -√-3 | √-3 | 1 | 1 | -√-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -√-3 | √-3 | -√-3 | 1 | 1 | √-3 | complex lifted from C3⋊D4 |
ρ19 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ22 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ23 | 4 | -4 | -4 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ24 | 4 | -4 | 4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
(1 81 13 57)(2 58 14 82)(3 83 15 59)(4 60 16 84)(5 73 17 49)(6 50 18 74)(7 75 19 51)(8 52 20 76)(9 77 21 53)(10 54 22 78)(11 79 23 55)(12 56 24 80)(25 46 90 72)(26 61 91 47)(27 48 92 62)(28 63 93 37)(29 38 94 64)(30 65 95 39)(31 40 96 66)(32 67 85 41)(33 42 86 68)(34 69 87 43)(35 44 88 70)(36 71 89 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 61 75 85 13 47 51 32)(2 90 52 66 14 25 76 40)(3 71 77 95 15 45 53 30)(4 88 54 64 16 35 78 38)(5 69 79 93 17 43 55 28)(6 86 56 62 18 33 80 48)(7 67 81 91 19 41 57 26)(8 96 58 72 20 31 82 46)(9 65 83 89 21 39 59 36)(10 94 60 70 22 29 84 44)(11 63 73 87 23 37 49 34)(12 92 50 68 24 27 74 42)
G:=sub<Sym(96)| (1,81,13,57)(2,58,14,82)(3,83,15,59)(4,60,16,84)(5,73,17,49)(6,50,18,74)(7,75,19,51)(8,52,20,76)(9,77,21,53)(10,54,22,78)(11,79,23,55)(12,56,24,80)(25,46,90,72)(26,61,91,47)(27,48,92,62)(28,63,93,37)(29,38,94,64)(30,65,95,39)(31,40,96,66)(32,67,85,41)(33,42,86,68)(34,69,87,43)(35,44,88,70)(36,71,89,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,61,75,85,13,47,51,32)(2,90,52,66,14,25,76,40)(3,71,77,95,15,45,53,30)(4,88,54,64,16,35,78,38)(5,69,79,93,17,43,55,28)(6,86,56,62,18,33,80,48)(7,67,81,91,19,41,57,26)(8,96,58,72,20,31,82,46)(9,65,83,89,21,39,59,36)(10,94,60,70,22,29,84,44)(11,63,73,87,23,37,49,34)(12,92,50,68,24,27,74,42)>;
G:=Group( (1,81,13,57)(2,58,14,82)(3,83,15,59)(4,60,16,84)(5,73,17,49)(6,50,18,74)(7,75,19,51)(8,52,20,76)(9,77,21,53)(10,54,22,78)(11,79,23,55)(12,56,24,80)(25,46,90,72)(26,61,91,47)(27,48,92,62)(28,63,93,37)(29,38,94,64)(30,65,95,39)(31,40,96,66)(32,67,85,41)(33,42,86,68)(34,69,87,43)(35,44,88,70)(36,71,89,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,61,75,85,13,47,51,32)(2,90,52,66,14,25,76,40)(3,71,77,95,15,45,53,30)(4,88,54,64,16,35,78,38)(5,69,79,93,17,43,55,28)(6,86,56,62,18,33,80,48)(7,67,81,91,19,41,57,26)(8,96,58,72,20,31,82,46)(9,65,83,89,21,39,59,36)(10,94,60,70,22,29,84,44)(11,63,73,87,23,37,49,34)(12,92,50,68,24,27,74,42) );
G=PermutationGroup([[(1,81,13,57),(2,58,14,82),(3,83,15,59),(4,60,16,84),(5,73,17,49),(6,50,18,74),(7,75,19,51),(8,52,20,76),(9,77,21,53),(10,54,22,78),(11,79,23,55),(12,56,24,80),(25,46,90,72),(26,61,91,47),(27,48,92,62),(28,63,93,37),(29,38,94,64),(30,65,95,39),(31,40,96,66),(32,67,85,41),(33,42,86,68),(34,69,87,43),(35,44,88,70),(36,71,89,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,61,75,85,13,47,51,32),(2,90,52,66,14,25,76,40),(3,71,77,95,15,45,53,30),(4,88,54,64,16,35,78,38),(5,69,79,93,17,43,55,28),(6,86,56,62,18,33,80,48),(7,67,81,91,19,41,57,26),(8,96,58,72,20,31,82,46),(9,65,83,89,21,39,59,36),(10,94,60,70,22,29,84,44),(11,63,73,87,23,37,49,34),(12,92,50,68,24,27,74,42)]])
C12.Q8 is a maximal subgroup of
Dic3⋊6SD16 D4⋊Dic6 D4.2Dic6 D6.SD16 D6⋊SD16 C3⋊C8⋊D4 C24⋊1C4⋊C2 D4⋊S3⋊C4 Dic3⋊7SD16 C3⋊Q16⋊C4 Q8⋊2Dic6 Q8.3Dic6 D6.1SD16 D6⋊2SD16 D6⋊C8.C2 C3⋊C8.D4 Dic6⋊Q8 C24⋊5Q8 C24⋊3Q8 S3×C4.Q8 C8⋊(C4×S3) D6.2SD16 D6.4SD16 D12⋊Q8 C24⋊4Q8 Dic6.2Q8 C8.6Dic6 C8.27(C4×S3) C8⋊S3⋊C4 C2.D8⋊S3 C2.D8⋊7S3 D12.2Q8 C4⋊C4.225D6 C4⋊C4.228D6 C4⋊C4.231D6 C4⋊C4.232D6 C4⋊C4.233D6 C4⋊C4.234D6 C4⋊C4.236D6 C12.38SD16 D4.3Dic6 C42.48D6 C4×D4.S3 Q8⋊4Dic6 Q8.5Dic6 C4×Q8⋊2S3 C42.59D6 C4⋊D4.S3 C6.Q16⋊C2 C4⋊D4⋊S3 C3⋊C8⋊23D4 (C2×Q8).49D6 (C2×Q8).51D6 C3⋊C8⋊24D4 C3⋊C8.6D4 Dic6.4Q8 C42.68D6 C42.215D6 D12.4Q8 C12.SD16 C42.76D6 D12⋊5Q8 Dic6⋊6Q8 C4.Dic18 C12.Dic6 C12.6Dic6 C12.10Dic6 C30.SD16 C60.Q8 C60.2Q8 Dic5.Dic6
C12.Q8 is a maximal quotient of
C12.39SD16 C8.Dic6 C24.6Q8 C12.C42 C4.Dic18 C12.Dic6 C12.6Dic6 C12.10Dic6 C30.SD16 C60.Q8 C60.2Q8 Dic5.Dic6
Matrix representation of C12.Q8 ►in GL5(𝔽73)
72 | 0 | 0 | 0 | 0 |
0 | 72 | 2 | 0 | 0 |
0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
27 | 0 | 0 | 0 | 0 |
0 | 58 | 39 | 0 | 0 |
0 | 41 | 15 | 0 | 0 |
0 | 0 | 0 | 30 | 30 |
0 | 0 | 0 | 43 | 60 |
72 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 67 | 12 | 0 | 0 |
0 | 0 | 0 | 5 | 54 |
0 | 0 | 0 | 59 | 68 |
G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,72,72,0,0,0,2,1,0,0,0,0,0,72,0,0,0,0,0,72],[27,0,0,0,0,0,58,41,0,0,0,39,15,0,0,0,0,0,30,43,0,0,0,30,60],[72,0,0,0,0,0,0,67,0,0,0,12,12,0,0,0,0,0,5,59,0,0,0,54,68] >;
C12.Q8 in GAP, Magma, Sage, TeX
C_{12}.Q_8
% in TeX
G:=Group("C12.Q8");
// GroupNames label
G:=SmallGroup(96,15);
// by ID
G=gap.SmallGroup(96,15);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,48,313,31,297,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^4=b^12=1,c^2=a*b^6,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b^-1>;
// generators/relations
Export
Subgroup lattice of C12.Q8 in TeX
Character table of C12.Q8 in TeX