Copied to
clipboard

G = C12.Q8order 96 = 25·3

2nd non-split extension by C12 of Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.2Q8, C6.4SD16, C4.2Dic6, C3⋊C82C4, C4⋊C4.2S3, C31(C4.Q8), C6.3(C4⋊C4), C4.12(C4×S3), C12.2(C2×C4), (C2×C4).34D6, (C2×C6).29D4, C4⋊Dic3.9C2, C2.1(D4.S3), (C2×C12).9C22, C2.4(Dic3⋊C4), C2.1(Q82S3), C22.13(C3⋊D4), (C2×C3⋊C8).2C2, (C3×C4⋊C4).2C2, SmallGroup(96,15)

Series: Derived Chief Lower central Upper central

C1C12 — C12.Q8
C1C3C6C2×C6C2×C12C2×C3⋊C8 — C12.Q8
C3C6C12 — C12.Q8
C1C22C2×C4C4⋊C4

Generators and relations for C12.Q8
 G = < a,b,c | a4=b12=1, c2=ab6, bab-1=a-1, ac=ca, cbc-1=a-1b-1 >

4C4
12C4
2C2×C4
3C8
3C8
6C2×C4
4C12
4Dic3
3C2×C8
3C4⋊C4
2C2×Dic3
2C2×C12
3C4.Q8

Character table of C12.Q8

 class 12A2B2C34A4B4C4D4E4F6A6B6C8A8B8C8D12A12B12C12D12E12F
 size 11112224412122226666444444
ρ1111111111111111111111111    trivial
ρ21111111-1-1-1-11111111-1-1-111-1    linear of order 2
ρ3111111111-1-1111-1-1-1-1111111    linear of order 2
ρ41111111-1-111111-1-1-1-1-1-1-111-1    linear of order 2
ρ511-1-11-11i-i-ii-11-1-111-1i-i-i1-1i    linear of order 4
ρ611-1-11-11-iii-i-11-1-111-1-iii1-1-i    linear of order 4
ρ711-1-11-11i-ii-i-11-11-1-11i-i-i1-1i    linear of order 4
ρ811-1-11-11-ii-ii-11-11-1-11-iii1-1-i    linear of order 4
ρ92222-1222200-1-1-10000-1-1-1-1-1-1    orthogonal lifted from S3
ρ102222-122-2-200-1-1-10000111-1-11    orthogonal lifted from D6
ρ1122222-2-200002220000000-2-20    orthogonal lifted from D4
ρ1222-2-222-20000-22-20000000-220    symplectic lifted from Q8, Schur index 2
ρ1322-2-2-12-200001-110000-3-331-13    symplectic lifted from Dic6, Schur index 2
ρ1422-2-2-12-200001-11000033-31-1-3    symplectic lifted from Dic6, Schur index 2
ρ1522-2-2-1-222i-2i001-110000-iii-11-i    complex lifted from C4×S3
ρ1622-2-2-1-22-2i2i001-110000i-i-i-11i    complex lifted from C4×S3
ρ172222-1-2-20000-1-1-10000-3--3-311--3    complex lifted from C3⋊D4
ρ182222-1-2-20000-1-1-10000--3-3--311-3    complex lifted from C3⋊D4
ρ192-2-2220000002-2-2-2-2--2--2000000    complex lifted from SD16
ρ202-22-22000000-2-22-2--2-2--2000000    complex lifted from SD16
ρ212-2-2220000002-2-2--2--2-2-2000000    complex lifted from SD16
ρ222-22-22000000-2-22--2-2--2-2000000    complex lifted from SD16
ρ234-4-44-2000000-2220000000000    orthogonal lifted from Q82S3
ρ244-44-4-200000022-20000000000    symplectic lifted from D4.S3, Schur index 2

Smallest permutation representation of C12.Q8
Regular action on 96 points
Generators in S96
(1 81 13 57)(2 58 14 82)(3 83 15 59)(4 60 16 84)(5 73 17 49)(6 50 18 74)(7 75 19 51)(8 52 20 76)(9 77 21 53)(10 54 22 78)(11 79 23 55)(12 56 24 80)(25 46 90 72)(26 61 91 47)(27 48 92 62)(28 63 93 37)(29 38 94 64)(30 65 95 39)(31 40 96 66)(32 67 85 41)(33 42 86 68)(34 69 87 43)(35 44 88 70)(36 71 89 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 61 75 85 13 47 51 32)(2 90 52 66 14 25 76 40)(3 71 77 95 15 45 53 30)(4 88 54 64 16 35 78 38)(5 69 79 93 17 43 55 28)(6 86 56 62 18 33 80 48)(7 67 81 91 19 41 57 26)(8 96 58 72 20 31 82 46)(9 65 83 89 21 39 59 36)(10 94 60 70 22 29 84 44)(11 63 73 87 23 37 49 34)(12 92 50 68 24 27 74 42)

G:=sub<Sym(96)| (1,81,13,57)(2,58,14,82)(3,83,15,59)(4,60,16,84)(5,73,17,49)(6,50,18,74)(7,75,19,51)(8,52,20,76)(9,77,21,53)(10,54,22,78)(11,79,23,55)(12,56,24,80)(25,46,90,72)(26,61,91,47)(27,48,92,62)(28,63,93,37)(29,38,94,64)(30,65,95,39)(31,40,96,66)(32,67,85,41)(33,42,86,68)(34,69,87,43)(35,44,88,70)(36,71,89,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,61,75,85,13,47,51,32)(2,90,52,66,14,25,76,40)(3,71,77,95,15,45,53,30)(4,88,54,64,16,35,78,38)(5,69,79,93,17,43,55,28)(6,86,56,62,18,33,80,48)(7,67,81,91,19,41,57,26)(8,96,58,72,20,31,82,46)(9,65,83,89,21,39,59,36)(10,94,60,70,22,29,84,44)(11,63,73,87,23,37,49,34)(12,92,50,68,24,27,74,42)>;

G:=Group( (1,81,13,57)(2,58,14,82)(3,83,15,59)(4,60,16,84)(5,73,17,49)(6,50,18,74)(7,75,19,51)(8,52,20,76)(9,77,21,53)(10,54,22,78)(11,79,23,55)(12,56,24,80)(25,46,90,72)(26,61,91,47)(27,48,92,62)(28,63,93,37)(29,38,94,64)(30,65,95,39)(31,40,96,66)(32,67,85,41)(33,42,86,68)(34,69,87,43)(35,44,88,70)(36,71,89,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,61,75,85,13,47,51,32)(2,90,52,66,14,25,76,40)(3,71,77,95,15,45,53,30)(4,88,54,64,16,35,78,38)(5,69,79,93,17,43,55,28)(6,86,56,62,18,33,80,48)(7,67,81,91,19,41,57,26)(8,96,58,72,20,31,82,46)(9,65,83,89,21,39,59,36)(10,94,60,70,22,29,84,44)(11,63,73,87,23,37,49,34)(12,92,50,68,24,27,74,42) );

G=PermutationGroup([[(1,81,13,57),(2,58,14,82),(3,83,15,59),(4,60,16,84),(5,73,17,49),(6,50,18,74),(7,75,19,51),(8,52,20,76),(9,77,21,53),(10,54,22,78),(11,79,23,55),(12,56,24,80),(25,46,90,72),(26,61,91,47),(27,48,92,62),(28,63,93,37),(29,38,94,64),(30,65,95,39),(31,40,96,66),(32,67,85,41),(33,42,86,68),(34,69,87,43),(35,44,88,70),(36,71,89,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,61,75,85,13,47,51,32),(2,90,52,66,14,25,76,40),(3,71,77,95,15,45,53,30),(4,88,54,64,16,35,78,38),(5,69,79,93,17,43,55,28),(6,86,56,62,18,33,80,48),(7,67,81,91,19,41,57,26),(8,96,58,72,20,31,82,46),(9,65,83,89,21,39,59,36),(10,94,60,70,22,29,84,44),(11,63,73,87,23,37,49,34),(12,92,50,68,24,27,74,42)]])

C12.Q8 is a maximal subgroup of
Dic36SD16  D4⋊Dic6  D4.2Dic6  D6.SD16  D6⋊SD16  C3⋊C8⋊D4  C241C4⋊C2  D4⋊S3⋊C4  Dic37SD16  C3⋊Q16⋊C4  Q82Dic6  Q8.3Dic6  D6.1SD16  D62SD16  D6⋊C8.C2  C3⋊C8.D4  Dic6⋊Q8  C245Q8  C243Q8  S3×C4.Q8  C8⋊(C4×S3)  D6.2SD16  D6.4SD16  D12⋊Q8  C244Q8  Dic6.2Q8  C8.6Dic6  C8.27(C4×S3)  C8⋊S3⋊C4  C2.D8⋊S3  C2.D87S3  D12.2Q8  C4⋊C4.225D6  C4⋊C4.228D6  C4⋊C4.231D6  C4⋊C4.232D6  C4⋊C4.233D6  C4⋊C4.234D6  C4⋊C4.236D6  C12.38SD16  D4.3Dic6  C42.48D6  C4×D4.S3  Q84Dic6  Q8.5Dic6  C4×Q82S3  C42.59D6  C4⋊D4.S3  C6.Q16⋊C2  C4⋊D4⋊S3  C3⋊C823D4  (C2×Q8).49D6  (C2×Q8).51D6  C3⋊C824D4  C3⋊C8.6D4  Dic6.4Q8  C42.68D6  C42.215D6  D12.4Q8  C12.SD16  C42.76D6  D125Q8  Dic66Q8  C4.Dic18  C12.Dic6  C12.6Dic6  C12.10Dic6  C30.SD16  C60.Q8  C60.2Q8  Dic5.Dic6
C12.Q8 is a maximal quotient of
C12.39SD16  C8.Dic6  C24.6Q8  C12.C42  C4.Dic18  C12.Dic6  C12.6Dic6  C12.10Dic6  C30.SD16  C60.Q8  C60.2Q8  Dic5.Dic6

Matrix representation of C12.Q8 in GL5(𝔽73)

720000
072200
072100
000720
000072
,
270000
0583900
0411500
0003030
0004360
,
720000
001200
0671200
000554
0005968

G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,72,72,0,0,0,2,1,0,0,0,0,0,72,0,0,0,0,0,72],[27,0,0,0,0,0,58,41,0,0,0,39,15,0,0,0,0,0,30,43,0,0,0,30,60],[72,0,0,0,0,0,0,67,0,0,0,12,12,0,0,0,0,0,5,59,0,0,0,54,68] >;

C12.Q8 in GAP, Magma, Sage, TeX

C_{12}.Q_8
% in TeX

G:=Group("C12.Q8");
// GroupNames label

G:=SmallGroup(96,15);
// by ID

G=gap.SmallGroup(96,15);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,48,313,31,297,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^4=b^12=1,c^2=a*b^6,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b^-1>;
// generators/relations

Export

Subgroup lattice of C12.Q8 in TeX
Character table of C12.Q8 in TeX

׿
×
𝔽