Copied to
clipboard

G = C3xD21order 126 = 2·32·7

Direct product of C3 and D21

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C3xD21, C21:5C6, C21:2S3, C32:1D7, C3:(C3xD7), C7:3(C3xS3), (C3xC21):2C2, SmallGroup(126,13)

Series: Derived Chief Lower central Upper central

C1C21 — C3xD21
C1C7C21C3xC21 — C3xD21
C21 — C3xD21
C1C3

Generators and relations for C3xD21
 G = < a,b,c | a3=b21=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 76 in 18 conjugacy classes, 10 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, D7, C3xS3, C3xD7, D21, C3xD21
21C2
2C3
7S3
21C6
3D7
2C21
7C3xS3
3C3xD7

Smallest permutation representation of C3xD21
On 42 points
Generators in S42
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)
(1 32)(2 31)(3 30)(4 29)(5 28)(6 27)(7 26)(8 25)(9 24)(10 23)(11 22)(12 42)(13 41)(14 40)(15 39)(16 38)(17 37)(18 36)(19 35)(20 34)(21 33)

G:=sub<Sym(42)| (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,33)>;

G:=Group( (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,33) );

G=PermutationGroup([[(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)], [(1,32),(2,31),(3,30),(4,29),(5,28),(6,27),(7,26),(8,25),(9,24),(10,23),(11,22),(12,42),(13,41),(14,40),(15,39),(16,38),(17,37),(18,36),(19,35),(20,34),(21,33)]])

C3xD21 is a maximal subgroup of   C3xS3xD7  D21:S3  D21:C9  He3:D7  D63:C3  C32:D21
C3xD21 is a maximal quotient of   He3:D7  D63:C3

36 conjugacy classes

class 1  2 3A3B3C3D3E6A6B7A7B7C21A···21X
order12333336677721···21
size1211122221212222···2

36 irreducible representations

dim1111222222
type+++++
imageC1C2C3C6S3D7C3xS3C3xD7D21C3xD21
kernelC3xD21C3xC21D21C21C21C32C7C3C3C1
# reps11221326612

Matrix representation of C3xD21 in GL2(F43) generated by

360
036
,
230
015
,
015
230
G:=sub<GL(2,GF(43))| [36,0,0,36],[23,0,0,15],[0,23,15,0] >;

C3xD21 in GAP, Magma, Sage, TeX

C_3\times D_{21}
% in TeX

G:=Group("C3xD21");
// GroupNames label

G:=SmallGroup(126,13);
// by ID

G=gap.SmallGroup(126,13);
# by ID

G:=PCGroup([4,-2,-3,-3,-7,146,1731]);
// Polycyclic

G:=Group<a,b,c|a^3=b^21=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3xD21 in TeX

׿
x
:
Z
F
o
wr
Q
<