Extensions 1→N→G→Q→1 with N=C4 and Q=D14

Direct product G=N×Q with N=C4 and Q=D14
dρLabelID
C2×C4×D756C2xC4xD7112,28

Semidirect products G=N:Q with N=C4 and Q=D14
extensionφ:Q→Aut NdρLabelID
C41D14 = D4×D7φ: D14/D7C2 ⊆ Aut C4284+C4:1D14112,31
C42D14 = C2×D28φ: D14/C14C2 ⊆ Aut C456C4:2D14112,29

Non-split extensions G=N.Q with N=C4 and Q=D14
extensionφ:Q→Aut NdρLabelID
C4.1D14 = D4⋊D7φ: D14/D7C2 ⊆ Aut C4564+C4.1D14112,14
C4.2D14 = D4.D7φ: D14/D7C2 ⊆ Aut C4564-C4.2D14112,15
C4.3D14 = Q8⋊D7φ: D14/D7C2 ⊆ Aut C4564+C4.3D14112,16
C4.4D14 = C7⋊Q16φ: D14/D7C2 ⊆ Aut C41124-C4.4D14112,17
C4.5D14 = D42D7φ: D14/D7C2 ⊆ Aut C4564-C4.5D14112,32
C4.6D14 = Q8×D7φ: D14/D7C2 ⊆ Aut C4564-C4.6D14112,33
C4.7D14 = Q82D7φ: D14/D7C2 ⊆ Aut C4564+C4.7D14112,34
C4.8D14 = C56⋊C2φ: D14/C14C2 ⊆ Aut C4562C4.8D14112,5
C4.9D14 = D56φ: D14/C14C2 ⊆ Aut C4562+C4.9D14112,6
C4.10D14 = Dic28φ: D14/C14C2 ⊆ Aut C41122-C4.10D14112,7
C4.11D14 = C2×Dic14φ: D14/C14C2 ⊆ Aut C4112C4.11D14112,27
C4.12D14 = C8×D7central extension (φ=1)562C4.12D14112,3
C4.13D14 = C8⋊D7central extension (φ=1)562C4.13D14112,4
C4.14D14 = C2×C7⋊C8central extension (φ=1)112C4.14D14112,8
C4.15D14 = C4.Dic7central extension (φ=1)562C4.15D14112,9
C4.16D14 = C4○D28central extension (φ=1)562C4.16D14112,30

׿
×
𝔽