Copied to
clipboard

G = C4⋊C4.D6order 192 = 26·3

5th non-split extension by C4⋊C4 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.5D6, (C2×D4).19D6, C24⋊C416C2, (C2×C8).166D6, C6.D83C2, D4⋊C415S3, C12.3(C4○D4), C123D4.4C2, D4⋊Dic32C2, C2.D2421C2, C2.8(Q83D6), C4.Dic62C2, C4.21(C4○D12), C2.11(D8⋊S3), C6.53(C8⋊C22), (C2×Dic3).15D4, (C6×D4).25C22, C22.166(S3×D4), C4.47(D42S3), (C2×C12).204C23, (C2×C24).222C22, C6.23(C4.4D4), (C2×D12).46C22, C4⋊Dic3.63C22, (C4×Dic3).8C22, C32(C42.29C22), C2.13(C23.11D6), (C2×C6).217(C2×D4), (C3×C4⋊C4).9C22, (C2×C3⋊C8).10C22, (C3×D4⋊C4)⋊22C2, (C2×C4).311(C22×S3), SmallGroup(192,323)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C4⋊C4.D6
C1C3C6C12C2×C12C4×Dic3C123D4 — C4⋊C4.D6
C3C6C2×C12 — C4⋊C4.D6
C1C22C2×C4D4⋊C4

Generators and relations for C4⋊C4.D6
 G = < a,b,c,d | a4=b4=c6=d2=1, bab-1=cac-1=dad=a-1, cbc-1=a-1b-1, dbd=ab, dcd=b2c-1 >

Subgroups: 392 in 110 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×D4, C2×D4, C3⋊C8, C24, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C8⋊C4, D4⋊C4, D4⋊C4, C42.C2, C41D4, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, C3×C4⋊C4, C2×C24, C2×D12, C2×C3⋊D4, C6×D4, C42.29C22, C6.D8, C24⋊C4, C2.D24, D4⋊Dic3, C3×D4⋊C4, C4.Dic6, C123D4, C4⋊C4.D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4.4D4, C8⋊C22, C4○D12, S3×D4, D42S3, C42.29C22, C23.11D6, D8⋊S3, Q83D6, C4⋊C4.D6

Character table of C4⋊C4.D6

 class 12A2B2C2D2E34A4B4C4D4E4F6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
 size 111182422281212242228844121244884444
ρ1111111111111111111111111111111    trivial
ρ211111-11111-1-1-11111111-1-111111111    linear of order 2
ρ31111-111111-1-1-1111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ41111-1-11111111111-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ511111-1111-1-1-1111111-1-11111-1-1-1-1-1-1    linear of order 2
ρ6111111111-111-111111-1-1-1-111-1-1-1-1-1-1    linear of order 2
ρ71111-1-1111-111-1111-1-1111111-1-11111    linear of order 2
ρ81111-11111-1-1-11111-1-111-1-111-1-11111    linear of order 2
ρ92222-20-122-2000-1-1-1112200-1-111-1-1-1-1    orthogonal lifted from D6
ρ10222220-122-2000-1-1-1-1-1-2-200-1-1111111    orthogonal lifted from D6
ρ112222002-2-20-220222000000-2-2000000    orthogonal lifted from D4
ρ122222-20-1222000-1-1-111-2-200-1-1-1-11111    orthogonal lifted from D6
ρ132222002-2-202-20222000000-2-2000000    orthogonal lifted from D4
ρ14222220-1222000-1-1-1-1-12200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1522-2-2002-220000-2-2200-2i2i00-22002i2i-2i-2i    complex lifted from C4○D4
ρ1622-2-20022-20000-2-220000-2i2i2-2000000    complex lifted from C4○D4
ρ1722-2-2002-220000-2-22002i-2i00-2200-2i-2i2i2i    complex lifted from C4○D4
ρ1822-2-20022-20000-2-2200002i-2i2-2000000    complex lifted from C4○D4
ρ1922-2-200-1-22000011-1-3--32i-2i001-13-3ii-i-i    complex lifted from C4○D12
ρ2022-2-200-1-22000011-1--3-3-2i2i001-13-3-i-iii    complex lifted from C4○D12
ρ2122-2-200-1-22000011-1-3--3-2i2i001-1-33-i-iii    complex lifted from C4○D12
ρ2222-2-200-1-22000011-1--3-32i-2i001-1-33ii-i-i    complex lifted from C4○D12
ρ234-4-440040000004-4-400000000000000    orthogonal lifted from C8⋊C22
ρ244-44-4004000000-44-400000000000000    orthogonal lifted from C8⋊C22
ρ25444400-2-4-40000-2-2-200000022000000    orthogonal lifted from S3×D4
ρ264-4-4400-2000000-2220000000000-66-66    orthogonal lifted from Q83D6
ρ274-4-4400-2000000-22200000000006-66-6    orthogonal lifted from Q83D6
ρ2844-4-400-24-4000022-2000000-22000000    symplectic lifted from D42S3, Schur index 2
ρ294-44-400-20000002-220000000000-6--6--6-6    complex lifted from D8⋊S3
ρ304-44-400-20000002-220000000000--6-6-6--6    complex lifted from D8⋊S3

Smallest permutation representation of C4⋊C4.D6
On 96 points
Generators in S96
(1 41 73 63)(2 64 74 42)(3 37 75 65)(4 66 76 38)(5 39 77 61)(6 62 78 40)(7 85 51 19)(8 20 52 86)(9 87 53 21)(10 22 54 88)(11 89 49 23)(12 24 50 90)(13 57 79 35)(14 36 80 58)(15 59 81 31)(16 32 82 60)(17 55 83 33)(18 34 84 56)(25 47 91 69)(26 70 92 48)(27 43 93 71)(28 72 94 44)(29 45 95 67)(30 68 96 46)
(1 69 57 19)(2 8 58 26)(3 71 59 21)(4 10 60 28)(5 67 55 23)(6 12 56 30)(7 63 25 13)(9 65 27 15)(11 61 29 17)(14 48 64 86)(16 44 66 88)(18 46 62 90)(20 80 70 42)(22 82 72 38)(24 84 68 40)(31 87 75 43)(32 94 76 54)(33 89 77 45)(34 96 78 50)(35 85 73 47)(36 92 74 52)(37 93 81 53)(39 95 83 49)(41 91 79 51)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 3)(2 58)(4 56)(6 60)(7 87)(8 48)(9 85)(10 46)(11 89)(12 44)(13 81)(14 42)(15 79)(16 40)(17 83)(18 38)(19 53)(20 92)(21 51)(22 96)(23 49)(24 94)(25 43)(26 86)(27 47)(28 90)(29 45)(30 88)(31 35)(32 78)(34 76)(36 74)(37 63)(39 61)(41 65)(50 72)(52 70)(54 68)(57 59)(62 82)(64 80)(66 84)(67 95)(69 93)(71 91)(73 75)

G:=sub<Sym(96)| (1,41,73,63)(2,64,74,42)(3,37,75,65)(4,66,76,38)(5,39,77,61)(6,62,78,40)(7,85,51,19)(8,20,52,86)(9,87,53,21)(10,22,54,88)(11,89,49,23)(12,24,50,90)(13,57,79,35)(14,36,80,58)(15,59,81,31)(16,32,82,60)(17,55,83,33)(18,34,84,56)(25,47,91,69)(26,70,92,48)(27,43,93,71)(28,72,94,44)(29,45,95,67)(30,68,96,46), (1,69,57,19)(2,8,58,26)(3,71,59,21)(4,10,60,28)(5,67,55,23)(6,12,56,30)(7,63,25,13)(9,65,27,15)(11,61,29,17)(14,48,64,86)(16,44,66,88)(18,46,62,90)(20,80,70,42)(22,82,72,38)(24,84,68,40)(31,87,75,43)(32,94,76,54)(33,89,77,45)(34,96,78,50)(35,85,73,47)(36,92,74,52)(37,93,81,53)(39,95,83,49)(41,91,79,51), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,3)(2,58)(4,56)(6,60)(7,87)(8,48)(9,85)(10,46)(11,89)(12,44)(13,81)(14,42)(15,79)(16,40)(17,83)(18,38)(19,53)(20,92)(21,51)(22,96)(23,49)(24,94)(25,43)(26,86)(27,47)(28,90)(29,45)(30,88)(31,35)(32,78)(34,76)(36,74)(37,63)(39,61)(41,65)(50,72)(52,70)(54,68)(57,59)(62,82)(64,80)(66,84)(67,95)(69,93)(71,91)(73,75)>;

G:=Group( (1,41,73,63)(2,64,74,42)(3,37,75,65)(4,66,76,38)(5,39,77,61)(6,62,78,40)(7,85,51,19)(8,20,52,86)(9,87,53,21)(10,22,54,88)(11,89,49,23)(12,24,50,90)(13,57,79,35)(14,36,80,58)(15,59,81,31)(16,32,82,60)(17,55,83,33)(18,34,84,56)(25,47,91,69)(26,70,92,48)(27,43,93,71)(28,72,94,44)(29,45,95,67)(30,68,96,46), (1,69,57,19)(2,8,58,26)(3,71,59,21)(4,10,60,28)(5,67,55,23)(6,12,56,30)(7,63,25,13)(9,65,27,15)(11,61,29,17)(14,48,64,86)(16,44,66,88)(18,46,62,90)(20,80,70,42)(22,82,72,38)(24,84,68,40)(31,87,75,43)(32,94,76,54)(33,89,77,45)(34,96,78,50)(35,85,73,47)(36,92,74,52)(37,93,81,53)(39,95,83,49)(41,91,79,51), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,3)(2,58)(4,56)(6,60)(7,87)(8,48)(9,85)(10,46)(11,89)(12,44)(13,81)(14,42)(15,79)(16,40)(17,83)(18,38)(19,53)(20,92)(21,51)(22,96)(23,49)(24,94)(25,43)(26,86)(27,47)(28,90)(29,45)(30,88)(31,35)(32,78)(34,76)(36,74)(37,63)(39,61)(41,65)(50,72)(52,70)(54,68)(57,59)(62,82)(64,80)(66,84)(67,95)(69,93)(71,91)(73,75) );

G=PermutationGroup([[(1,41,73,63),(2,64,74,42),(3,37,75,65),(4,66,76,38),(5,39,77,61),(6,62,78,40),(7,85,51,19),(8,20,52,86),(9,87,53,21),(10,22,54,88),(11,89,49,23),(12,24,50,90),(13,57,79,35),(14,36,80,58),(15,59,81,31),(16,32,82,60),(17,55,83,33),(18,34,84,56),(25,47,91,69),(26,70,92,48),(27,43,93,71),(28,72,94,44),(29,45,95,67),(30,68,96,46)], [(1,69,57,19),(2,8,58,26),(3,71,59,21),(4,10,60,28),(5,67,55,23),(6,12,56,30),(7,63,25,13),(9,65,27,15),(11,61,29,17),(14,48,64,86),(16,44,66,88),(18,46,62,90),(20,80,70,42),(22,82,72,38),(24,84,68,40),(31,87,75,43),(32,94,76,54),(33,89,77,45),(34,96,78,50),(35,85,73,47),(36,92,74,52),(37,93,81,53),(39,95,83,49),(41,91,79,51)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,3),(2,58),(4,56),(6,60),(7,87),(8,48),(9,85),(10,46),(11,89),(12,44),(13,81),(14,42),(15,79),(16,40),(17,83),(18,38),(19,53),(20,92),(21,51),(22,96),(23,49),(24,94),(25,43),(26,86),(27,47),(28,90),(29,45),(30,88),(31,35),(32,78),(34,76),(36,74),(37,63),(39,61),(41,65),(50,72),(52,70),(54,68),(57,59),(62,82),(64,80),(66,84),(67,95),(69,93),(71,91),(73,75)]])

Matrix representation of C4⋊C4.D6 in GL6(𝔽73)

100000
010000
0010710
0001071
0010720
0001072
,
4600000
9270000
0066592814
001475914
00766714
007145966
,
72670000
010000
001206112
000126149
0066610
00670061
,
100000
24720000
00727200
000100
00727211
0001072

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,71,0,72,0,0,0,0,71,0,72],[46,9,0,0,0,0,0,27,0,0,0,0,0,0,66,14,7,7,0,0,59,7,66,14,0,0,28,59,7,59,0,0,14,14,14,66],[72,0,0,0,0,0,67,1,0,0,0,0,0,0,12,0,6,67,0,0,0,12,6,0,0,0,61,61,61,0,0,0,12,49,0,61],[1,24,0,0,0,0,0,72,0,0,0,0,0,0,72,0,72,0,0,0,72,1,72,1,0,0,0,0,1,0,0,0,0,0,1,72] >;

C4⋊C4.D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4.D_6
% in TeX

G:=Group("C4:C4.D6");
// GroupNames label

G:=SmallGroup(192,323);
// by ID

G=gap.SmallGroup(192,323);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,253,1094,135,100,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b^-1,d*b*d=a*b,d*c*d=b^2*c^-1>;
// generators/relations

Export

Character table of C4⋊C4.D6 in TeX

׿
×
𝔽