Copied to
clipboard

G = D4.Dic6order 192 = 26·3

1st non-split extension by D4 of Dic6 acting via Dic6/Dic3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.1Dic6, C4⋊C4.4D6, C31(D4.Q8), (C3×D4).1Q8, C12.3(C2×Q8), C8⋊Dic311C2, (C2×C8).114D6, C6.Q164C2, C4.3(C2×Dic6), Dic3⋊C811C2, (C2×D4).128D6, D4⋊C4.6S3, C6.37(C4○D8), C4.Dic61C2, (D4×Dic3).5C2, C6.9(C22⋊Q8), C2.10(D8⋊S3), C6.27(C8⋊C22), D4⋊Dic3.3C2, (C6×D4).24C22, C22.165(S3×D4), C12.147(C4○D4), C4.76(D42S3), (C2×C24).125C22, (C2×C12).203C23, (C2×Dic3).137D4, C2.8(Q8.7D6), C4⋊Dic3.62C22, (C4×Dic3).7C22, C2.14(Dic3.D4), (C2×C3⋊C8).9C22, (C2×C6).216(C2×D4), (C3×C4⋊C4).8C22, (C3×D4⋊C4).6C2, (C2×C4).310(C22×S3), SmallGroup(192,322)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D4.Dic6
C1C3C6C2×C6C2×C12C4×Dic3D4×Dic3 — D4.Dic6
C3C6C2×C12 — D4.Dic6
C1C22C2×C4D4⋊C4

Generators and relations for D4.Dic6
 G = < a,b,c,d | a4=b2=c12=1, d2=c6, bab=cac-1=a-1, ad=da, cbc-1=a-1b, bd=db, dcd-1=a2c-1 >

Subgroups: 280 in 102 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, C23, Dic3, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C3⋊C8, C24, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, D4⋊C4, D4⋊C4, C4⋊C8, C4.Q8, C2.D8, C4×D4, C42.C2, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, C6.D4, C3×C4⋊C4, C2×C24, C22×Dic3, C6×D4, D4.Q8, C6.Q16, Dic3⋊C8, C8⋊Dic3, D4⋊Dic3, C3×D4⋊C4, C4.Dic6, D4×Dic3, D4.Dic6
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, Dic6, C22×S3, C22⋊Q8, C4○D8, C8⋊C22, C2×Dic6, S3×D4, D42S3, D4.Q8, Dic3.D4, D8⋊S3, Q8.7D6, D4.Dic6

Smallest permutation representation of D4.Dic6
On 96 points
Generators in S96
(1 17 25 74)(2 75 26 18)(3 19 27 76)(4 77 28 20)(5 21 29 78)(6 79 30 22)(7 23 31 80)(8 81 32 24)(9 13 33 82)(10 83 34 14)(11 15 35 84)(12 73 36 16)(37 55 88 68)(38 69 89 56)(39 57 90 70)(40 71 91 58)(41 59 92 72)(42 61 93 60)(43 49 94 62)(44 63 95 50)(45 51 96 64)(46 65 85 52)(47 53 86 66)(48 67 87 54)
(1 80)(2 8)(3 82)(4 10)(5 84)(6 12)(7 74)(9 76)(11 78)(13 27)(14 77)(15 29)(16 79)(17 31)(18 81)(19 33)(20 83)(21 35)(22 73)(23 25)(24 75)(26 32)(28 34)(30 36)(37 94)(38 63)(39 96)(40 65)(41 86)(42 67)(43 88)(44 69)(45 90)(46 71)(47 92)(48 61)(49 55)(50 89)(51 57)(52 91)(53 59)(54 93)(56 95)(58 85)(60 87)(62 68)(64 70)(66 72)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 65 7 71)(2 51 8 57)(3 63 9 69)(4 49 10 55)(5 61 11 67)(6 59 12 53)(13 89 19 95)(14 37 20 43)(15 87 21 93)(16 47 22 41)(17 85 23 91)(18 45 24 39)(25 52 31 58)(26 64 32 70)(27 50 33 56)(28 62 34 68)(29 60 35 54)(30 72 36 66)(38 76 44 82)(40 74 46 80)(42 84 48 78)(73 86 79 92)(75 96 81 90)(77 94 83 88)

G:=sub<Sym(96)| (1,17,25,74)(2,75,26,18)(3,19,27,76)(4,77,28,20)(5,21,29,78)(6,79,30,22)(7,23,31,80)(8,81,32,24)(9,13,33,82)(10,83,34,14)(11,15,35,84)(12,73,36,16)(37,55,88,68)(38,69,89,56)(39,57,90,70)(40,71,91,58)(41,59,92,72)(42,61,93,60)(43,49,94,62)(44,63,95,50)(45,51,96,64)(46,65,85,52)(47,53,86,66)(48,67,87,54), (1,80)(2,8)(3,82)(4,10)(5,84)(6,12)(7,74)(9,76)(11,78)(13,27)(14,77)(15,29)(16,79)(17,31)(18,81)(19,33)(20,83)(21,35)(22,73)(23,25)(24,75)(26,32)(28,34)(30,36)(37,94)(38,63)(39,96)(40,65)(41,86)(42,67)(43,88)(44,69)(45,90)(46,71)(47,92)(48,61)(49,55)(50,89)(51,57)(52,91)(53,59)(54,93)(56,95)(58,85)(60,87)(62,68)(64,70)(66,72), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,65,7,71)(2,51,8,57)(3,63,9,69)(4,49,10,55)(5,61,11,67)(6,59,12,53)(13,89,19,95)(14,37,20,43)(15,87,21,93)(16,47,22,41)(17,85,23,91)(18,45,24,39)(25,52,31,58)(26,64,32,70)(27,50,33,56)(28,62,34,68)(29,60,35,54)(30,72,36,66)(38,76,44,82)(40,74,46,80)(42,84,48,78)(73,86,79,92)(75,96,81,90)(77,94,83,88)>;

G:=Group( (1,17,25,74)(2,75,26,18)(3,19,27,76)(4,77,28,20)(5,21,29,78)(6,79,30,22)(7,23,31,80)(8,81,32,24)(9,13,33,82)(10,83,34,14)(11,15,35,84)(12,73,36,16)(37,55,88,68)(38,69,89,56)(39,57,90,70)(40,71,91,58)(41,59,92,72)(42,61,93,60)(43,49,94,62)(44,63,95,50)(45,51,96,64)(46,65,85,52)(47,53,86,66)(48,67,87,54), (1,80)(2,8)(3,82)(4,10)(5,84)(6,12)(7,74)(9,76)(11,78)(13,27)(14,77)(15,29)(16,79)(17,31)(18,81)(19,33)(20,83)(21,35)(22,73)(23,25)(24,75)(26,32)(28,34)(30,36)(37,94)(38,63)(39,96)(40,65)(41,86)(42,67)(43,88)(44,69)(45,90)(46,71)(47,92)(48,61)(49,55)(50,89)(51,57)(52,91)(53,59)(54,93)(56,95)(58,85)(60,87)(62,68)(64,70)(66,72), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,65,7,71)(2,51,8,57)(3,63,9,69)(4,49,10,55)(5,61,11,67)(6,59,12,53)(13,89,19,95)(14,37,20,43)(15,87,21,93)(16,47,22,41)(17,85,23,91)(18,45,24,39)(25,52,31,58)(26,64,32,70)(27,50,33,56)(28,62,34,68)(29,60,35,54)(30,72,36,66)(38,76,44,82)(40,74,46,80)(42,84,48,78)(73,86,79,92)(75,96,81,90)(77,94,83,88) );

G=PermutationGroup([[(1,17,25,74),(2,75,26,18),(3,19,27,76),(4,77,28,20),(5,21,29,78),(6,79,30,22),(7,23,31,80),(8,81,32,24),(9,13,33,82),(10,83,34,14),(11,15,35,84),(12,73,36,16),(37,55,88,68),(38,69,89,56),(39,57,90,70),(40,71,91,58),(41,59,92,72),(42,61,93,60),(43,49,94,62),(44,63,95,50),(45,51,96,64),(46,65,85,52),(47,53,86,66),(48,67,87,54)], [(1,80),(2,8),(3,82),(4,10),(5,84),(6,12),(7,74),(9,76),(11,78),(13,27),(14,77),(15,29),(16,79),(17,31),(18,81),(19,33),(20,83),(21,35),(22,73),(23,25),(24,75),(26,32),(28,34),(30,36),(37,94),(38,63),(39,96),(40,65),(41,86),(42,67),(43,88),(44,69),(45,90),(46,71),(47,92),(48,61),(49,55),(50,89),(51,57),(52,91),(53,59),(54,93),(56,95),(58,85),(60,87),(62,68),(64,70),(66,72)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,65,7,71),(2,51,8,57),(3,63,9,69),(4,49,10,55),(5,61,11,67),(6,59,12,53),(13,89,19,95),(14,37,20,43),(15,87,21,93),(16,47,22,41),(17,85,23,91),(18,45,24,39),(25,52,31,58),(26,64,32,70),(27,50,33,56),(28,62,34,68),(29,60,35,54),(30,72,36,66),(38,76,44,82),(40,74,46,80),(42,84,48,78),(73,86,79,92),(75,96,81,90),(77,94,83,88)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222234444444446666688881212121224242424
size111144222668121212242228844121244884444

33 irreducible representations

dim1111111122222222244444
type++++++++++-+++-+-+
imageC1C2C2C2C2C2C2C2S3D4Q8D6D6D6C4○D4Dic6C4○D8C8⋊C22D42S3S3×D4D8⋊S3Q8.7D6
kernelD4.Dic6C6.Q16Dic3⋊C8C8⋊Dic3D4⋊Dic3C3×D4⋊C4C4.Dic6D4×Dic3D4⋊C4C2×Dic3C3×D4C4⋊C4C2×C8C2×D4C12D4C6C6C4C22C2C2
# reps1111111112211124411122

Matrix representation of D4.Dic6 in GL4(𝔽73) generated by

17100
17200
0010
0001
,
72200
0100
00720
00072
,
611200
671200
006666
00759
,
27000
02700
001012
002263
G:=sub<GL(4,GF(73))| [1,1,0,0,71,72,0,0,0,0,1,0,0,0,0,1],[72,0,0,0,2,1,0,0,0,0,72,0,0,0,0,72],[61,67,0,0,12,12,0,0,0,0,66,7,0,0,66,59],[27,0,0,0,0,27,0,0,0,0,10,22,0,0,12,63] >;

D4.Dic6 in GAP, Magma, Sage, TeX

D_4.{\rm Dic}_6
% in TeX

G:=Group("D4.Dic6");
// GroupNames label

G:=SmallGroup(192,322);
// by ID

G=gap.SmallGroup(192,322);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,926,219,58,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^12=1,d^2=c^6,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽