extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1D4 = D12⋊C4 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).1D4 | 96,32 |
(C2×C6).2D4 = C23.7D6 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).2D4 | 96,41 |
(C2×C6).3D4 = Q8⋊3Dic3 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).3D4 | 96,44 |
(C2×C6).4D4 = C23.21D6 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).4D4 | 96,93 |
(C2×C6).5D4 = C8⋊D6 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 24 | 4+ | (C2xC6).5D4 | 96,115 |
(C2×C6).6D4 = C8.D6 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 48 | 4- | (C2xC6).6D4 | 96,116 |
(C2×C6).7D4 = C23.23D6 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).7D4 | 96,142 |
(C2×C6).8D4 = D4⋊D6 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 24 | 4+ | (C2xC6).8D4 | 96,156 |
(C2×C6).9D4 = Q8.13D6 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).9D4 | 96,157 |
(C2×C6).10D4 = Q8.14D6 | φ: D4/C2 → C22 ⊆ Aut C2×C6 | 48 | 4- | (C2xC6).10D4 | 96,158 |
(C2×C6).11D4 = C3×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 48 | 2 | (C2xC6).11D4 | 96,182 |
(C2×C6).12D4 = C2.Dic12 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).12D4 | 96,23 |
(C2×C6).13D4 = C8⋊Dic3 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).13D4 | 96,24 |
(C2×C6).14D4 = C24⋊1C4 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).14D4 | 96,25 |
(C2×C6).15D4 = C2.D24 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).15D4 | 96,28 |
(C2×C6).16D4 = C2×C24⋊C2 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).16D4 | 96,109 |
(C2×C6).17D4 = C2×D24 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).17D4 | 96,110 |
(C2×C6).18D4 = C4○D24 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 48 | 2 | (C2xC6).18D4 | 96,111 |
(C2×C6).19D4 = C2×Dic12 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).19D4 | 96,112 |
(C2×C6).20D4 = C2×C4⋊Dic3 | φ: D4/C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).20D4 | 96,132 |
(C2×C6).21D4 = C3×C23⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).21D4 | 96,49 |
(C2×C6).22D4 = C3×C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 24 | 2 | (C2xC6).22D4 | 96,54 |
(C2×C6).23D4 = C3×C22.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).23D4 | 96,170 |
(C2×C6).24D4 = C3×C8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).24D4 | 96,183 |
(C2×C6).25D4 = C3×C8.C22 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).25D4 | 96,184 |
(C2×C6).26D4 = C42⋊4S3 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 24 | 2 | (C2xC6).26D4 | 96,12 |
(C2×C6).27D4 = C23.6D6 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).27D4 | 96,13 |
(C2×C6).28D4 = C6.Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).28D4 | 96,14 |
(C2×C6).29D4 = C12.Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).29D4 | 96,15 |
(C2×C6).30D4 = C6.D8 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).30D4 | 96,16 |
(C2×C6).31D4 = C6.SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).31D4 | 96,17 |
(C2×C6).32D4 = C6.C42 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).32D4 | 96,38 |
(C2×C6).33D4 = D4⋊Dic3 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).33D4 | 96,39 |
(C2×C6).34D4 = Q8⋊2Dic3 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).34D4 | 96,42 |
(C2×C6).35D4 = C2×Dic3⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).35D4 | 96,130 |
(C2×C6).36D4 = C2×D6⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).36D4 | 96,134 |
(C2×C6).37D4 = C23.28D6 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).37D4 | 96,136 |
(C2×C6).38D4 = C2×D4⋊S3 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).38D4 | 96,138 |
(C2×C6).39D4 = D12⋊6C22 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).39D4 | 96,139 |
(C2×C6).40D4 = C2×D4.S3 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).40D4 | 96,140 |
(C2×C6).41D4 = C2×Q8⋊2S3 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).41D4 | 96,148 |
(C2×C6).42D4 = Q8.11D6 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).42D4 | 96,149 |
(C2×C6).43D4 = C2×C3⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).43D4 | 96,150 |
(C2×C6).44D4 = C2×C6.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).44D4 | 96,159 |
(C2×C6).45D4 = C3×C2.C42 | central extension (φ=1) | 96 | | (C2xC6).45D4 | 96,45 |
(C2×C6).46D4 = C3×D4⋊C4 | central extension (φ=1) | 48 | | (C2xC6).46D4 | 96,52 |
(C2×C6).47D4 = C3×Q8⋊C4 | central extension (φ=1) | 96 | | (C2xC6).47D4 | 96,53 |
(C2×C6).48D4 = C3×C4.Q8 | central extension (φ=1) | 96 | | (C2xC6).48D4 | 96,56 |
(C2×C6).49D4 = C3×C2.D8 | central extension (φ=1) | 96 | | (C2xC6).49D4 | 96,57 |
(C2×C6).50D4 = C6×C22⋊C4 | central extension (φ=1) | 48 | | (C2xC6).50D4 | 96,162 |
(C2×C6).51D4 = C6×C4⋊C4 | central extension (φ=1) | 96 | | (C2xC6).51D4 | 96,163 |
(C2×C6).52D4 = C6×D8 | central extension (φ=1) | 48 | | (C2xC6).52D4 | 96,179 |
(C2×C6).53D4 = C6×SD16 | central extension (φ=1) | 48 | | (C2xC6).53D4 | 96,180 |
(C2×C6).54D4 = C6×Q16 | central extension (φ=1) | 96 | | (C2xC6).54D4 | 96,181 |