Extensions 1→N→G→Q→1 with N=C2×C6 and Q=D4

Direct product G=N×Q with N=C2×C6 and Q=D4
dρLabelID
D4×C2×C648D4xC2xC696,221

Semidirect products G=N:Q with N=C2×C6 and Q=D4
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1D4 = D6⋊D4φ: D4/C2C22 ⊆ Aut C2×C624(C2xC6):1D496,89
(C2×C6)⋊2D4 = C232D6φ: D4/C2C22 ⊆ Aut C2×C624(C2xC6):2D496,144
(C2×C6)⋊3D4 = C23.14D6φ: D4/C2C22 ⊆ Aut C2×C648(C2xC6):3D496,146
(C2×C6)⋊4D4 = C3×C4⋊D4φ: D4/C4C2 ⊆ Aut C2×C648(C2xC6):4D496,168
(C2×C6)⋊5D4 = C127D4φ: D4/C4C2 ⊆ Aut C2×C648(C2xC6):5D496,137
(C2×C6)⋊6D4 = C22×D12φ: D4/C4C2 ⊆ Aut C2×C648(C2xC6):6D496,207
(C2×C6)⋊7D4 = C3×C22≀C2φ: D4/C22C2 ⊆ Aut C2×C624(C2xC6):7D496,167
(C2×C6)⋊8D4 = C244S3φ: D4/C22C2 ⊆ Aut C2×C624(C2xC6):8D496,160
(C2×C6)⋊9D4 = C22×C3⋊D4φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6):9D496,219

Non-split extensions G=N.Q with N=C2×C6 and Q=D4
extensionφ:Q→Aut NdρLabelID
(C2×C6).1D4 = D12⋊C4φ: D4/C2C22 ⊆ Aut C2×C6244(C2xC6).1D496,32
(C2×C6).2D4 = C23.7D6φ: D4/C2C22 ⊆ Aut C2×C6244(C2xC6).2D496,41
(C2×C6).3D4 = Q83Dic3φ: D4/C2C22 ⊆ Aut C2×C6244(C2xC6).3D496,44
(C2×C6).4D4 = C23.21D6φ: D4/C2C22 ⊆ Aut C2×C648(C2xC6).4D496,93
(C2×C6).5D4 = C8⋊D6φ: D4/C2C22 ⊆ Aut C2×C6244+(C2xC6).5D496,115
(C2×C6).6D4 = C8.D6φ: D4/C2C22 ⊆ Aut C2×C6484-(C2xC6).6D496,116
(C2×C6).7D4 = C23.23D6φ: D4/C2C22 ⊆ Aut C2×C648(C2xC6).7D496,142
(C2×C6).8D4 = D4⋊D6φ: D4/C2C22 ⊆ Aut C2×C6244+(C2xC6).8D496,156
(C2×C6).9D4 = Q8.13D6φ: D4/C2C22 ⊆ Aut C2×C6484(C2xC6).9D496,157
(C2×C6).10D4 = Q8.14D6φ: D4/C2C22 ⊆ Aut C2×C6484-(C2xC6).10D496,158
(C2×C6).11D4 = C3×C4○D8φ: D4/C4C2 ⊆ Aut C2×C6482(C2xC6).11D496,182
(C2×C6).12D4 = C2.Dic12φ: D4/C4C2 ⊆ Aut C2×C696(C2xC6).12D496,23
(C2×C6).13D4 = C8⋊Dic3φ: D4/C4C2 ⊆ Aut C2×C696(C2xC6).13D496,24
(C2×C6).14D4 = C241C4φ: D4/C4C2 ⊆ Aut C2×C696(C2xC6).14D496,25
(C2×C6).15D4 = C2.D24φ: D4/C4C2 ⊆ Aut C2×C648(C2xC6).15D496,28
(C2×C6).16D4 = C2×C24⋊C2φ: D4/C4C2 ⊆ Aut C2×C648(C2xC6).16D496,109
(C2×C6).17D4 = C2×D24φ: D4/C4C2 ⊆ Aut C2×C648(C2xC6).17D496,110
(C2×C6).18D4 = C4○D24φ: D4/C4C2 ⊆ Aut C2×C6482(C2xC6).18D496,111
(C2×C6).19D4 = C2×Dic12φ: D4/C4C2 ⊆ Aut C2×C696(C2xC6).19D496,112
(C2×C6).20D4 = C2×C4⋊Dic3φ: D4/C4C2 ⊆ Aut C2×C696(C2xC6).20D496,132
(C2×C6).21D4 = C3×C23⋊C4φ: D4/C22C2 ⊆ Aut C2×C6244(C2xC6).21D496,49
(C2×C6).22D4 = C3×C4≀C2φ: D4/C22C2 ⊆ Aut C2×C6242(C2xC6).22D496,54
(C2×C6).23D4 = C3×C22.D4φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6).23D496,170
(C2×C6).24D4 = C3×C8⋊C22φ: D4/C22C2 ⊆ Aut C2×C6244(C2xC6).24D496,183
(C2×C6).25D4 = C3×C8.C22φ: D4/C22C2 ⊆ Aut C2×C6484(C2xC6).25D496,184
(C2×C6).26D4 = C424S3φ: D4/C22C2 ⊆ Aut C2×C6242(C2xC6).26D496,12
(C2×C6).27D4 = C23.6D6φ: D4/C22C2 ⊆ Aut C2×C6244(C2xC6).27D496,13
(C2×C6).28D4 = C6.Q16φ: D4/C22C2 ⊆ Aut C2×C696(C2xC6).28D496,14
(C2×C6).29D4 = C12.Q8φ: D4/C22C2 ⊆ Aut C2×C696(C2xC6).29D496,15
(C2×C6).30D4 = C6.D8φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6).30D496,16
(C2×C6).31D4 = C6.SD16φ: D4/C22C2 ⊆ Aut C2×C696(C2xC6).31D496,17
(C2×C6).32D4 = C6.C42φ: D4/C22C2 ⊆ Aut C2×C696(C2xC6).32D496,38
(C2×C6).33D4 = D4⋊Dic3φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6).33D496,39
(C2×C6).34D4 = Q82Dic3φ: D4/C22C2 ⊆ Aut C2×C696(C2xC6).34D496,42
(C2×C6).35D4 = C2×Dic3⋊C4φ: D4/C22C2 ⊆ Aut C2×C696(C2xC6).35D496,130
(C2×C6).36D4 = C2×D6⋊C4φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6).36D496,134
(C2×C6).37D4 = C23.28D6φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6).37D496,136
(C2×C6).38D4 = C2×D4⋊S3φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6).38D496,138
(C2×C6).39D4 = D126C22φ: D4/C22C2 ⊆ Aut C2×C6244(C2xC6).39D496,139
(C2×C6).40D4 = C2×D4.S3φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6).40D496,140
(C2×C6).41D4 = C2×Q82S3φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6).41D496,148
(C2×C6).42D4 = Q8.11D6φ: D4/C22C2 ⊆ Aut C2×C6484(C2xC6).42D496,149
(C2×C6).43D4 = C2×C3⋊Q16φ: D4/C22C2 ⊆ Aut C2×C696(C2xC6).43D496,150
(C2×C6).44D4 = C2×C6.D4φ: D4/C22C2 ⊆ Aut C2×C648(C2xC6).44D496,159
(C2×C6).45D4 = C3×C2.C42central extension (φ=1)96(C2xC6).45D496,45
(C2×C6).46D4 = C3×D4⋊C4central extension (φ=1)48(C2xC6).46D496,52
(C2×C6).47D4 = C3×Q8⋊C4central extension (φ=1)96(C2xC6).47D496,53
(C2×C6).48D4 = C3×C4.Q8central extension (φ=1)96(C2xC6).48D496,56
(C2×C6).49D4 = C3×C2.D8central extension (φ=1)96(C2xC6).49D496,57
(C2×C6).50D4 = C6×C22⋊C4central extension (φ=1)48(C2xC6).50D496,162
(C2×C6).51D4 = C6×C4⋊C4central extension (φ=1)96(C2xC6).51D496,163
(C2×C6).52D4 = C6×D8central extension (φ=1)48(C2xC6).52D496,179
(C2×C6).53D4 = C6×SD16central extension (φ=1)48(C2xC6).53D496,180
(C2×C6).54D4 = C6×Q16central extension (φ=1)96(C2xC6).54D496,181

׿
×
𝔽