Extensions 1→N→G→Q→1 with N=C4 and Q=D6

Direct product G=N×Q with N=C4 and Q=D6
dρLabelID
S3×C2×C424S3xC2xC448,35

Semidirect products G=N:Q with N=C4 and Q=D6
extensionφ:Q→Aut NdρLabelID
C41D6 = S3×D4φ: D6/S3C2 ⊆ Aut C4124+C4:1D648,38
C42D6 = C2×D12φ: D6/C6C2 ⊆ Aut C424C4:2D648,36

Non-split extensions G=N.Q with N=C4 and Q=D6
extensionφ:Q→Aut NdρLabelID
C4.1D6 = D4⋊S3φ: D6/S3C2 ⊆ Aut C4244+C4.1D648,15
C4.2D6 = D4.S3φ: D6/S3C2 ⊆ Aut C4244-C4.2D648,16
C4.3D6 = Q82S3φ: D6/S3C2 ⊆ Aut C4244+C4.3D648,17
C4.4D6 = C3⋊Q16φ: D6/S3C2 ⊆ Aut C4484-C4.4D648,18
C4.5D6 = D42S3φ: D6/S3C2 ⊆ Aut C4244-C4.5D648,39
C4.6D6 = S3×Q8φ: D6/S3C2 ⊆ Aut C4244-C4.6D648,40
C4.7D6 = Q83S3φ: D6/S3C2 ⊆ Aut C4244+C4.7D648,41
C4.8D6 = C24⋊C2φ: D6/C6C2 ⊆ Aut C4242C4.8D648,6
C4.9D6 = D24φ: D6/C6C2 ⊆ Aut C4242+C4.9D648,7
C4.10D6 = Dic12φ: D6/C6C2 ⊆ Aut C4482-C4.10D648,8
C4.11D6 = C2×Dic6φ: D6/C6C2 ⊆ Aut C448C4.11D648,34
C4.12D6 = S3×C8central extension (φ=1)242C4.12D648,4
C4.13D6 = C8⋊S3central extension (φ=1)242C4.13D648,5
C4.14D6 = C2×C3⋊C8central extension (φ=1)48C4.14D648,9
C4.15D6 = C4.Dic3central extension (φ=1)242C4.15D648,10
C4.16D6 = C4○D12central extension (φ=1)242C4.16D648,37

׿
×
𝔽