Aliases: C4⋊S5, A5⋊1D4, (C2×S5)⋊1C2, (C4×A5)⋊2C2, C2.3(C2×S5), (C2×A5).2C22, SmallGroup(480,944)
Series: Chief►Derived ►Lower central ►Upper central
Subgroups: 1188 in 96 conjugacy classes, 9 normal (7 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C2×C4, D4, C23, D5, C10, Dic3, C12, A4, D6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, F5, D10, C4×S3, D12, C3⋊D4, C3×D4, S4, C2×A4, C22×S3, C4⋊D4, C4×D5, C2×F5, C4×A4, S3×D4, C2×S4, A5, C4⋊F5, C4⋊S4, S5, C2×A5, C4×A5, C2×S5, C4⋊S5
Quotients: C1, C2, C22, D4, S5, C2×S5, C4⋊S5
Character table of C4⋊S5
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 5 | 6A | 6B | 6C | 10 | 12 | 20A | 20B | |
size | 1 | 1 | 15 | 15 | 20 | 20 | 20 | 2 | 30 | 60 | 60 | 24 | 20 | 40 | 40 | 24 | 40 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | 4 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | orthogonal lifted from S5 |
ρ7 | 4 | 4 | 0 | 0 | 2 | -2 | 1 | -4 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×S5 |
ρ8 | 4 | 4 | 0 | 0 | 2 | 2 | 1 | 4 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | orthogonal lifted from S5 |
ρ9 | 4 | 4 | 0 | 0 | -2 | 2 | 1 | -4 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×S5 |
ρ10 | 5 | 5 | 1 | 1 | 1 | 1 | -1 | 5 | 1 | -1 | -1 | 0 | -1 | 1 | 1 | 0 | -1 | 0 | 0 | orthogonal lifted from S5 |
ρ11 | 5 | 5 | 1 | 1 | 1 | -1 | -1 | -5 | -1 | 1 | -1 | 0 | -1 | 1 | -1 | 0 | 1 | 0 | 0 | orthogonal lifted from C2×S5 |
ρ12 | 5 | 5 | 1 | 1 | -1 | 1 | -1 | -5 | -1 | -1 | 1 | 0 | -1 | -1 | 1 | 0 | 1 | 0 | 0 | orthogonal lifted from C2×S5 |
ρ13 | 5 | 5 | 1 | 1 | -1 | -1 | -1 | 5 | 1 | 1 | 1 | 0 | -1 | -1 | -1 | 0 | -1 | 0 | 0 | orthogonal lifted from S5 |
ρ14 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 6 | -2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | orthogonal lifted from S5 |
ρ15 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | -6 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | -1 | -1 | orthogonal lifted from C2×S5 |
ρ16 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 | 0 | -√-5 | √-5 | complex faithful |
ρ17 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 | 0 | √-5 | -√-5 | complex faithful |
ρ18 | 8 | -8 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal faithful |
ρ19 | 10 | -10 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 16)(2 12)(3 20)(4 8)(5 9)(7 11)(14 18)
(1 2)(3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)
G:=sub<Sym(20)| (1,16)(2,12)(3,20)(4,8)(5,9)(7,11)(14,18), (1,2)(3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)>;
G:=Group( (1,16)(2,12)(3,20)(4,8)(5,9)(7,11)(14,18), (1,2)(3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20) );
G=PermutationGroup([[(1,16),(2,12),(3,20),(4,8),(5,9),(7,11),(14,18)], [(1,2),(3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20)]])
G:=TransitiveGroup(20,120);
(1 19)(2 23)(3 13)(4 12)(5 9)(6 14)(7 24)(8 20)(10 18)(11 15)(16 21)(17 22)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,19)(2,23)(3,13)(4,12)(5,9)(6,14)(7,24)(8,20)(10,18)(11,15)(16,21)(17,22), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,19)(2,23)(3,13)(4,12)(5,9)(6,14)(7,24)(8,20)(10,18)(11,15)(16,21)(17,22), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,19),(2,23),(3,13),(4,12),(5,9),(6,14),(7,24),(8,20),(10,18),(11,15),(16,21),(17,22)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,1352);
Matrix representation of C4⋊S5 ►in GL6(𝔽3)
0 | 2 | 2 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 2 |
2 | 0 | 2 | 0 | 2 | 1 |
0 | 1 | 0 | 0 | 2 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 1 | 2 |
2 | 1 | 2 | 0 | 0 | 0 |
2 | 0 | 2 | 0 | 2 | 1 |
0 | 2 | 2 | 2 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 1 |
1 | 2 | 0 | 1 | 0 | 1 |
G:=sub<GL(6,GF(3))| [0,0,0,2,0,0,2,0,1,0,1,1,2,0,1,2,0,0,2,0,0,0,0,0,1,0,0,2,2,0,0,1,2,1,1,0],[0,2,2,0,0,1,2,1,0,2,0,2,0,2,2,2,1,0,0,0,0,2,1,1,1,0,2,1,0,0,2,0,1,0,1,1] >;
C4⋊S5 in GAP, Magma, Sage, TeX
C_4\rtimes S_5
% in TeX
G:=Group("C4:S5");
// GroupNames label
G:=SmallGroup(480,944);
// by ID
G=gap.SmallGroup(480,944);
# by ID
Export