extension | φ:Q→Aut N | d | ρ | Label | ID |
(C4×C8)⋊1C4 = C42⋊1C8 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | | (C4xC8):1C4 | 128,6 |
(C4×C8)⋊2C4 = C42.5Q8 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | | (C4xC8):2C4 | 128,18 |
(C4×C8)⋊3C4 = (C4×C8)⋊C4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8):3C4 | 128,146 |
(C4×C8)⋊4C4 = C4⋊1D4⋊C4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 16 | 4+ | (C4xC8):4C4 | 128,140 |
(C4×C8)⋊5C4 = C8.(C4⋊C4) | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8):5C4 | 128,565 |
(C4×C8)⋊6C4 = (C4×C8)⋊6C4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8):6C4 | 128,141 |
(C4×C8)⋊7C4 = C42.6Q8 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | | (C4xC8):7C4 | 128,20 |
(C4×C8)⋊8C4 = C8.16C42 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8):8C4 | 128,479 |
(C4×C8)⋊9C4 = C8⋊C4⋊17C4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8):9C4 | 128,573 |
(C4×C8)⋊10C4 = C42.46Q8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):10C4 | 128,11 |
(C4×C8)⋊11C4 = C42⋊4C8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):11C4 | 128,476 |
(C4×C8)⋊12C4 = (C4×C8)⋊12C4 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):12C4 | 128,478 |
(C4×C8)⋊13C4 = C8×C4⋊C4 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):13C4 | 128,501 |
(C4×C8)⋊14C4 = C42.55Q8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):14C4 | 128,566 |
(C4×C8)⋊15C4 = C42.56Q8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):15C4 | 128,567 |
(C4×C8)⋊16C4 = C4×C2.D8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):16C4 | 128,507 |
(C4×C8)⋊17C4 = C42.59Q8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):17C4 | 128,577 |
(C4×C8)⋊18C4 = C42.60Q8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):18C4 | 128,578 |
(C4×C8)⋊19C4 = C8.14C42 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 32 | | (C4xC8):19C4 | 128,504 |
(C4×C8)⋊20C4 = C4×C4.Q8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):20C4 | 128,506 |
(C4×C8)⋊21C4 = C42.58Q8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):21C4 | 128,576 |
(C4×C8)⋊22C4 = C4×C8⋊C4 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):22C4 | 128,457 |
(C4×C8)⋊23C4 = C2.C43 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):23C4 | 128,458 |
(C4×C8)⋊24C4 = C4⋊C8⋊13C4 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8):24C4 | 128,502 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C4×C8).1C4 = C42.20D4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 64 | | (C4xC8).1C4 | 128,7 |
(C4×C8).2C4 = C42.23D4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 64 | | (C4xC8).2C4 | 128,19 |
(C4×C8).3C4 = C16⋊C8 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 128 | | (C4xC8).3C4 | 128,45 |
(C4×C8).4C4 = (C2×Q8).D4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | 4- | (C4xC8).4C4 | 128,143 |
(C4×C8).5C4 = C8.19M4(2) | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).5C4 | 128,898 |
(C4×C8).6C4 = (C4×C8).C4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8).6C4 | 128,142 |
(C4×C8).7C4 = C42.26D4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 64 | | (C4xC8).7C4 | 128,23 |
(C4×C8).8C4 = C32⋊C4 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).8C4 | 128,130 |
(C4×C8).9C4 = C8.23C42 | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).9C4 | 128,842 |
(C4×C8).10C4 = C8.5M4(2) | φ: C4/C1 → C4 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8).10C4 | 128,897 |
(C4×C8).11C4 = M4(2)⋊C8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).11C4 | 128,10 |
(C4×C8).12C4 = C16⋊5C8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).12C4 | 128,43 |
(C4×C8).13C4 = C8⋊C16 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).13C4 | 128,44 |
(C4×C8).14C4 = C4⋊C32 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).14C4 | 128,153 |
(C4×C8).15C4 = C2×C8⋊C8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).15C4 | 128,180 |
(C4×C8).16C4 = C8×M4(2) | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).16C4 | 128,181 |
(C4×C8).17C4 = C23.27C42 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).17C4 | 128,184 |
(C4×C8).18C4 = C8⋊8M4(2) | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).18C4 | 128,298 |
(C4×C8).19C4 = C8⋊7M4(2) | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).19C4 | 128,299 |
(C4×C8).20C4 = C42.43Q8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).20C4 | 128,300 |
(C4×C8).21C4 = C42.322D4 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).21C4 | 128,569 |
(C4×C8).22C4 = C2×C4⋊C16 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).22C4 | 128,881 |
(C4×C8).23C4 = C42.13C8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).23C4 | 128,894 |
(C4×C8).24C4 = C8.36D8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).24C4 | 128,102 |
(C4×C8).25C4 = C2×C8⋊1C8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).25C4 | 128,295 |
(C4×C8).26C4 = C42.42Q8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).26C4 | 128,296 |
(C4×C8).27C4 = C42.324D4 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).27C4 | 128,580 |
(C4×C8).28C4 = C8.C16 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 32 | 2 | (C4xC8).28C4 | 128,154 |
(C4×C8).29C4 = C2×C8.C8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 32 | | (C4xC8).29C4 | 128,884 |
(C4×C8).30C4 = C8⋊2C16 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).30C4 | 128,99 |
(C4×C8).31C4 = C2×C8⋊2C8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).31C4 | 128,294 |
(C4×C8).32C4 = C4×C8.C4 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).32C4 | 128,509 |
(C4×C8).33C4 = C32⋊5C4 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).33C4 | 128,129 |
(C4×C8).34C4 = C82⋊C2 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).34C4 | 128,182 |
(C4×C8).35C4 = C8⋊9M4(2) | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).35C4 | 128,183 |
(C4×C8).36C4 = C2×C16⋊5C4 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).36C4 | 128,838 |
(C4×C8).37C4 = C4×M5(2) | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).37C4 | 128,839 |
(C4×C8).38C4 = C4⋊M5(2) | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).38C4 | 128,882 |
(C4×C8).39C4 = C42.6C8 | φ: C4/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).39C4 | 128,895 |