direct product, p-group, abelian, monomial
Aliases: C2×C4×C8, SmallGroup(64,83)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2×C4×C8 |
C1 — C2×C4×C8 |
C1 — C2×C4×C8 |
Generators and relations for C2×C4×C8
G = < a,b,c | a2=b4=c8=1, ab=ba, ac=ca, bc=cb >
Subgroups: 81, all normal (9 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, C23, C42, C2×C8, C22×C4, C22×C4, C4×C8, C2×C42, C22×C8, C2×C4×C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C42, C2×C8, C22×C4, C4×C8, C2×C42, C22×C8, C2×C4×C8
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 33)(8 34)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 57)(48 58)
(1 47 19 13)(2 48 20 14)(3 41 21 15)(4 42 22 16)(5 43 23 9)(6 44 24 10)(7 45 17 11)(8 46 18 12)(25 36 58 52)(26 37 59 53)(27 38 60 54)(28 39 61 55)(29 40 62 56)(30 33 63 49)(31 34 64 50)(32 35 57 51)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,57)(48,58), (1,47,19,13)(2,48,20,14)(3,41,21,15)(4,42,22,16)(5,43,23,9)(6,44,24,10)(7,45,17,11)(8,46,18,12)(25,36,58,52)(26,37,59,53)(27,38,60,54)(28,39,61,55)(29,40,62,56)(30,33,63,49)(31,34,64,50)(32,35,57,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,57)(48,58), (1,47,19,13)(2,48,20,14)(3,41,21,15)(4,42,22,16)(5,43,23,9)(6,44,24,10)(7,45,17,11)(8,46,18,12)(25,36,58,52)(26,37,59,53)(27,38,60,54)(28,39,61,55)(29,40,62,56)(30,33,63,49)(31,34,64,50)(32,35,57,51), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,33),(8,34),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,57),(48,58)], [(1,47,19,13),(2,48,20,14),(3,41,21,15),(4,42,22,16),(5,43,23,9),(6,44,24,10),(7,45,17,11),(8,46,18,12),(25,36,58,52),(26,37,59,53),(27,38,60,54),(28,39,61,55),(29,40,62,56),(30,33,63,49),(31,34,64,50),(32,35,57,51)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])
C2×C4×C8 is a maximal subgroup of
C2.C82 C42.385D4 M4(2)⋊C8 C42.46Q8 C22.7M5(2) C42.7C8 C82⋊C2 C8⋊9M4(2) C23.27C42 C42.455D4 C42.315D4 C42.316D4 C42.305D4 C42.42Q8 C8⋊8M4(2) C8⋊7M4(2) C42.43Q8 C2.C43 C42⋊4C8 (C4×C8)⋊12C4 C42.379D4 C23.17C42 Q8.C42 C42.45Q8 C4⋊C8⋊13C4 C4⋊C8⋊14C4 C8.14C42 C42.55Q8 C42.56Q8 C42.322D4 C42.58Q8 C42.59Q8 C42.60Q8 C42.324D4 C4⋊C4⋊3C8 C22⋊C4⋊4C8 C2.(C8⋊8D4) C2.(C8⋊7D4) C42.428D4 C42.61Q8 C8⋊7(C4⋊C4) C8⋊5(C4⋊C4) C42.62Q8 C42.325D4 C42.431D4 C42.432D4 C42.433D4 (C2×C4)⋊9SD16 (C2×C4)⋊6Q16 (C2×C4)⋊6D8 C42.326D4 C42.327D4 C42.436D4 C42.437D4 C4⋊M5(2) C42.13C8 C42.6C8 C42.260C23 C42.681C23 C42.286C23 C42.290C23 C42.291C23 C42.355D4 C42.360D4 C42.364D4 C42.365D4 C42.308D4 C42.366D4 C42.367D4
C2×C4×C8 is a maximal quotient of
C82⋊C2 C42⋊4C8 C16○2M5(2)
64 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4X | 8A | ··· | 8AF |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C8 |
kernel | C2×C4×C8 | C4×C8 | C2×C42 | C22×C8 | C42 | C2×C8 | C22×C4 | C2×C4 |
# reps | 1 | 4 | 1 | 2 | 4 | 16 | 4 | 32 |
Matrix representation of C2×C4×C8 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
16 | 0 | 0 |
0 | 13 | 0 |
0 | 0 | 4 |
2 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 9 |
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[16,0,0,0,13,0,0,0,4],[2,0,0,0,16,0,0,0,9] >;
C2×C4×C8 in GAP, Magma, Sage, TeX
C_2\times C_4\times C_8
% in TeX
G:=Group("C2xC4xC8");
// GroupNames label
G:=SmallGroup(64,83);
// by ID
G=gap.SmallGroup(64,83);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,48,103,117]);
// Polycyclic
G:=Group<a,b,c|a^2=b^4=c^8=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations