Copied to
clipboard

G = C4xC16order 64 = 26

Abelian group of type [4,16]

direct product, p-group, abelian, monomial

Aliases: C4xC16, SmallGroup(64,26)

Series: Derived Chief Lower central Upper central Jennings

C1 — C4xC16
C1C2C4C2xC4C2xC8C4xC8 — C4xC16
C1 — C4xC16
C1 — C4xC16
C1C2C2C2C2C4C4C2xC8 — C4xC16

Generators and relations for C4xC16
 G = < a,b | a4=b16=1, ab=ba >

Subgroups: 29, all normal (11 characteristic)
Quotients: C1, C2, C4, C22, C8, C2xC4, C16, C42, C2xC8, C4xC8, C2xC16, C4xC16

Smallest permutation representation of C4xC16
Regular action on 64 points
Generators in S64
(1 38 23 63)(2 39 24 64)(3 40 25 49)(4 41 26 50)(5 42 27 51)(6 43 28 52)(7 44 29 53)(8 45 30 54)(9 46 31 55)(10 47 32 56)(11 48 17 57)(12 33 18 58)(13 34 19 59)(14 35 20 60)(15 36 21 61)(16 37 22 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,38,23,63)(2,39,24,64)(3,40,25,49)(4,41,26,50)(5,42,27,51)(6,43,28,52)(7,44,29,53)(8,45,30,54)(9,46,31,55)(10,47,32,56)(11,48,17,57)(12,33,18,58)(13,34,19,59)(14,35,20,60)(15,36,21,61)(16,37,22,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;

G:=Group( (1,38,23,63)(2,39,24,64)(3,40,25,49)(4,41,26,50)(5,42,27,51)(6,43,28,52)(7,44,29,53)(8,45,30,54)(9,46,31,55)(10,47,32,56)(11,48,17,57)(12,33,18,58)(13,34,19,59)(14,35,20,60)(15,36,21,61)(16,37,22,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,38,23,63),(2,39,24,64),(3,40,25,49),(4,41,26,50),(5,42,27,51),(6,43,28,52),(7,44,29,53),(8,45,30,54),(9,46,31,55),(10,47,32,56),(11,48,17,57),(12,33,18,58),(13,34,19,59),(14,35,20,60),(15,36,21,61),(16,37,22,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])

C4xC16 is a maximal subgroup of
C16:5C8  C8:C16  D4:C16  C4.16D16  Q16:1C8  Q8:C16  C16:3C8  C16:4C8  C16.3C8  C32:5C4  C4:C32  C8.C16  C16o2M5(2)  C42.13C8  C8.12M4(2)  C16:6D4  C16oD8  C8oD16  C16:4Q8  C4.4D16  C4.SD32  C8.22SD16  C4:D16  C4:Q32  C16:5D4  C8.21D8  C16:2Q8  C16.5Q8  C16:3Q8  Dic5:C16
C4xC16 is a maximal quotient of
C8:C16  C22.7M5(2)  C32:5C4  Dic5:C16

64 conjugacy classes

class 1 2A2B2C4A···4L8A···8P16A···16AF
order12224···48···816···16
size11111···11···11···1

64 irreducible representations

dim111111111
type+++
imageC1C2C2C4C4C4C8C8C16
kernelC4xC16C4xC8C2xC16C16C42C2xC8C8C2xC4C4
# reps1128228832

Matrix representation of C4xC16 in GL2(F17) generated by

130
01
,
110
010
G:=sub<GL(2,GF(17))| [13,0,0,1],[11,0,0,10] >;

C4xC16 in GAP, Magma, Sage, TeX

C_4\times C_{16}
% in TeX

G:=Group("C4xC16");
// GroupNames label

G:=SmallGroup(64,26);
// by ID

G=gap.SmallGroup(64,26);
# by ID

G:=PCGroup([6,-2,2,-2,2,-2,-2,24,55,86,88]);
// Polycyclic

G:=Group<a,b|a^4=b^16=1,a*b=b*a>;
// generators/relations

Export

Subgroup lattice of C4xC16 in TeX

׿
x
:
Z
F
o
wr
Q
<