direct product, p-group, abelian, monomial
Aliases: C4×C16, SmallGroup(64,26)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C4×C16 |
C1 — C4×C16 |
C1 — C4×C16 |
Generators and relations for C4×C16
G = < a,b | a4=b16=1, ab=ba >
(1 38 23 63)(2 39 24 64)(3 40 25 49)(4 41 26 50)(5 42 27 51)(6 43 28 52)(7 44 29 53)(8 45 30 54)(9 46 31 55)(10 47 32 56)(11 48 17 57)(12 33 18 58)(13 34 19 59)(14 35 20 60)(15 36 21 61)(16 37 22 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,38,23,63)(2,39,24,64)(3,40,25,49)(4,41,26,50)(5,42,27,51)(6,43,28,52)(7,44,29,53)(8,45,30,54)(9,46,31,55)(10,47,32,56)(11,48,17,57)(12,33,18,58)(13,34,19,59)(14,35,20,60)(15,36,21,61)(16,37,22,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;
G:=Group( (1,38,23,63)(2,39,24,64)(3,40,25,49)(4,41,26,50)(5,42,27,51)(6,43,28,52)(7,44,29,53)(8,45,30,54)(9,46,31,55)(10,47,32,56)(11,48,17,57)(12,33,18,58)(13,34,19,59)(14,35,20,60)(15,36,21,61)(16,37,22,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,38,23,63),(2,39,24,64),(3,40,25,49),(4,41,26,50),(5,42,27,51),(6,43,28,52),(7,44,29,53),(8,45,30,54),(9,46,31,55),(10,47,32,56),(11,48,17,57),(12,33,18,58),(13,34,19,59),(14,35,20,60),(15,36,21,61),(16,37,22,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])
C4×C16 is a maximal subgroup of
C16⋊5C8 C8⋊C16 D4⋊C16 C4.16D16 Q16⋊1C8 Q8⋊C16 C16⋊3C8 C16⋊4C8 C16.3C8 C32⋊5C4 C4⋊C32 C8.C16 C16○2M5(2) C42.13C8 C8.12M4(2) C16⋊6D4 C16○D8 C8○D16 C16⋊4Q8 C4.4D16 C4.SD32 C8.22SD16 C4⋊D16 C4⋊Q32 C16⋊5D4 C8.21D8 C16⋊2Q8 C16.5Q8 C16⋊3Q8 Dic5⋊C16
C4×C16 is a maximal quotient of
C8⋊C16 C22.7M5(2) C32⋊5C4 Dic5⋊C16
64 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | ··· | 4L | 8A | ··· | 8P | 16A | ··· | 16AF |
order | 1 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | ||||||
image | C1 | C2 | C2 | C4 | C4 | C4 | C8 | C8 | C16 |
kernel | C4×C16 | C4×C8 | C2×C16 | C16 | C42 | C2×C8 | C8 | C2×C4 | C4 |
# reps | 1 | 1 | 2 | 8 | 2 | 2 | 8 | 8 | 32 |
Matrix representation of C4×C16 ►in GL2(𝔽17) generated by
13 | 0 |
0 | 1 |
11 | 0 |
0 | 10 |
G:=sub<GL(2,GF(17))| [13,0,0,1],[11,0,0,10] >;
C4×C16 in GAP, Magma, Sage, TeX
C_4\times C_{16}
% in TeX
G:=Group("C4xC16");
// GroupNames label
G:=SmallGroup(64,26);
// by ID
G=gap.SmallGroup(64,26);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,24,55,86,88]);
// Polycyclic
G:=Group<a,b|a^4=b^16=1,a*b=b*a>;
// generators/relations
Export