extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1M4(2) = (C2×D4)⋊C8 | φ: M4(2)/C4 → C4 ⊆ Aut C2×C4 | 32 | | (C2xC4).1M4(2) | 128,50 |
(C2×C4).2M4(2) = (C2×C42).C4 | φ: M4(2)/C4 → C4 ⊆ Aut C2×C4 | 32 | | (C2xC4).2M4(2) | 128,51 |
(C2×C4).3M4(2) = C22⋊C4.C8 | φ: M4(2)/C4 → C4 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).3M4(2) | 128,60 |
(C2×C4).4M4(2) = C42.44D4 | φ: M4(2)/C4 → C4 ⊆ Aut C2×C4 | 64 | | (C2xC4).4M4(2) | 128,199 |
(C2×C4).5M4(2) = C8.19M4(2) | φ: M4(2)/C4 → C4 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).5M4(2) | 128,898 |
(C2×C4).6M4(2) = (C2×C4).98D8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).6M4(2) | 128,2 |
(C2×C4).7M4(2) = C4⋊C4⋊C8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).7M4(2) | 128,3 |
(C2×C4).8M4(2) = (C2×Q8)⋊C8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).8M4(2) | 128,4 |
(C2×C4).9M4(2) = C42.3Q8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).9M4(2) | 128,15 |
(C2×C4).10M4(2) = C8.31D8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).10M4(2) | 128,62 |
(C2×C4).11M4(2) = C8.17Q16 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).11M4(2) | 128,70 |
(C2×C4).12M4(2) = M4(2).C8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).12M4(2) | 128,110 |
(C2×C4).13M4(2) = C42.393D4 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).13M4(2) | 128,192 |
(C2×C4).14M4(2) = C42.394D4 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).14M4(2) | 128,193 |
(C2×C4).15M4(2) = C42.397D4 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).15M4(2) | 128,209 |
(C2×C4).16M4(2) = C42.398D4 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).16M4(2) | 128,210 |
(C2×C4).17M4(2) = C42.399D4 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).17M4(2) | 128,211 |
(C2×C4).18M4(2) = M4(2)⋊1C8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).18M4(2) | 128,297 |
(C2×C4).19M4(2) = (C2×C8).Q8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).19M4(2) | 128,649 |
(C2×C4).20M4(2) = C23.9M4(2) | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).20M4(2) | 128,656 |
(C2×C4).21M4(2) = C42.27Q8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).21M4(2) | 128,672 |
(C2×C4).22M4(2) = C42.120D4 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).22M4(2) | 128,717 |
(C2×C4).23M4(2) = C8.23C42 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).23M4(2) | 128,842 |
(C2×C4).24M4(2) = M5(2).19C22 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).24M4(2) | 128,847 |
(C2×C4).25M4(2) = M5(2)⋊12C22 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).25M4(2) | 128,849 |
(C2×C4).26M4(2) = M4(2).1C8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).26M4(2) | 128,885 |
(C2×C4).27M4(2) = C42.302C23 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).27M4(2) | 128,1715 |
(C2×C4).28M4(2) = C24.C8 | φ: M4(2)/C22 → C4 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).28M4(2) | 128,52 |
(C2×C4).29M4(2) = C42⋊C8 | φ: M4(2)/C22 → C4 ⊆ Aut C2×C4 | 32 | | (C2xC4).29M4(2) | 128,56 |
(C2×C4).30M4(2) = C42⋊3C8 | φ: M4(2)/C22 → C4 ⊆ Aut C2×C4 | 32 | | (C2xC4).30M4(2) | 128,57 |
(C2×C4).31M4(2) = C42.42D4 | φ: M4(2)/C22 → C4 ⊆ Aut C2×C4 | 32 | | (C2xC4).31M4(2) | 128,196 |
(C2×C4).32M4(2) = C8.5M4(2) | φ: M4(2)/C22 → C4 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).32M4(2) | 128,897 |
(C2×C4).33M4(2) = D4⋊C16 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).33M4(2) | 128,61 |
(C2×C4).34M4(2) = Q8⋊C16 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).34M4(2) | 128,69 |
(C2×C4).35M4(2) = C4⋊C8⋊14C4 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).35M4(2) | 128,503 |
(C2×C4).36M4(2) = C4⋊C4⋊3C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).36M4(2) | 128,648 |
(C2×C4).37M4(2) = C22⋊C4⋊4C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).37M4(2) | 128,655 |
(C2×C4).38M4(2) = M4(2)⋊C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).38M4(2) | 128,10 |
(C2×C4).39M4(2) = C42.46Q8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).39M4(2) | 128,11 |
(C2×C4).40M4(2) = M5(2)⋊7C4 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).40M4(2) | 128,111 |
(C2×C4).41M4(2) = C8⋊9M4(2) | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).41M4(2) | 128,183 |
(C2×C4).42M4(2) = C2×D4⋊C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).42M4(2) | 128,206 |
(C2×C4).43M4(2) = C2×Q8⋊C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).43M4(2) | 128,207 |
(C2×C4).44M4(2) = C42.455D4 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).44M4(2) | 128,208 |
(C2×C4).45M4(2) = C4⋊C8⋊13C4 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).45M4(2) | 128,502 |
(C2×C4).46M4(2) = C42.61Q8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).46M4(2) | 128,671 |
(C2×C4).47M4(2) = C42.325D4 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).47M4(2) | 128,686 |
(C2×C4).48M4(2) = C42.327D4 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).48M4(2) | 128,716 |
(C2×C4).49M4(2) = (C2×D4).5C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).49M4(2) | 128,845 |
(C2×C4).50M4(2) = C2×D4.C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).50M4(2) | 128,848 |
(C2×C4).51M4(2) = C4⋊C4.7C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).51M4(2) | 128,883 |
(C2×C4).52M4(2) = C2×C8⋊4Q8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).52M4(2) | 128,1691 |
(C2×C4).53M4(2) = C16⋊C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).53M4(2) | 128,45 |
(C2×C4).54M4(2) = C23⋊C16 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).54M4(2) | 128,46 |
(C2×C4).55M4(2) = C22.M5(2) | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).55M4(2) | 128,54 |
(C2×C4).56M4(2) = C8⋊2C16 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).56M4(2) | 128,99 |
(C2×C4).57M4(2) = C8.36D8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).57M4(2) | 128,102 |
(C2×C4).58M4(2) = C43.C2 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).58M4(2) | 128,477 |
(C2×C4).59M4(2) = C42.378D4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).59M4(2) | 128,481 |
(C2×C4).60M4(2) = C42.425D4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).60M4(2) | 128,529 |
(C2×C4).61M4(2) = C23.32M4(2) | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).61M4(2) | 128,549 |
(C2×C4).62M4(2) = C42⋊5C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).62M4(2) | 128,571 |
(C2×C4).63M4(2) = C42⋊1C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).63M4(2) | 128,6 |
(C2×C4).64M4(2) = C42.20D4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).64M4(2) | 128,7 |
(C2×C4).65M4(2) = C42⋊6C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).65M4(2) | 128,8 |
(C2×C4).66M4(2) = C42.385D4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).66M4(2) | 128,9 |
(C2×C4).67M4(2) = C42.2Q8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).67M4(2) | 128,13 |
(C2×C4).68M4(2) = C42.2C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).68M4(2) | 128,107 |
(C2×C4).69M4(2) = C42.7C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).69M4(2) | 128,108 |
(C2×C4).70M4(2) = M5(2)⋊C4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).70M4(2) | 128,109 |
(C2×C4).71M4(2) = C23.27C42 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).71M4(2) | 128,184 |
(C2×C4).72M4(2) = C42.371D4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).72M4(2) | 128,190 |
(C2×C4).73M4(2) = C2×C8⋊2C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).73M4(2) | 128,294 |
(C2×C4).74M4(2) = C2×C8⋊1C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).74M4(2) | 128,295 |
(C2×C4).75M4(2) = C42.42Q8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).75M4(2) | 128,296 |
(C2×C4).76M4(2) = C43.7C2 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).76M4(2) | 128,499 |
(C2×C4).77M4(2) = C42⋊8C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).77M4(2) | 128,563 |
(C2×C4).78M4(2) = C42⋊9C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).78M4(2) | 128,574 |
(C2×C4).79M4(2) = C2×C16⋊C4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).79M4(2) | 128,841 |
(C2×C4).80M4(2) = C24.5C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).80M4(2) | 128,844 |
(C2×C4).81M4(2) = C2×C23.C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).81M4(2) | 128,846 |
(C2×C4).82M4(2) = C4⋊M5(2) | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).82M4(2) | 128,882 |
(C2×C4).83M4(2) = C2×C8.C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).83M4(2) | 128,884 |
(C2×C4).84M4(2) = C2×C42.6C4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).84M4(2) | 128,1650 |
(C2×C4).85M4(2) = C2.C82 | central extension (φ=1) | 128 | | (C2xC4).85M4(2) | 128,5 |
(C2×C4).86M4(2) = C22.7M5(2) | central extension (φ=1) | 128 | | (C2xC4).86M4(2) | 128,106 |
(C2×C4).87M4(2) = C2×C8⋊C8 | central extension (φ=1) | 128 | | (C2xC4).87M4(2) | 128,180 |
(C2×C4).88M4(2) = C4×C8⋊C4 | central extension (φ=1) | 128 | | (C2xC4).88M4(2) | 128,457 |
(C2×C4).89M4(2) = C42⋊4C8 | central extension (φ=1) | 128 | | (C2xC4).89M4(2) | 128,476 |
(C2×C4).90M4(2) = C4×C22⋊C8 | central extension (φ=1) | 64 | | (C2xC4).90M4(2) | 128,480 |
(C2×C4).91M4(2) = C4×C4⋊C8 | central extension (φ=1) | 128 | | (C2xC4).91M4(2) | 128,498 |
(C2×C4).92M4(2) = C2×C22⋊C16 | central extension (φ=1) | 64 | | (C2xC4).92M4(2) | 128,843 |
(C2×C4).93M4(2) = C2×C4⋊C16 | central extension (φ=1) | 128 | | (C2xC4).93M4(2) | 128,881 |
(C2×C4).94M4(2) = C2×C42.12C4 | central extension (φ=1) | 64 | | (C2xC4).94M4(2) | 128,1649 |