Extensions 1→N→G→Q→1 with N=C2 and Q=C42Q16

Direct product G=N×Q with N=C2 and Q=C42Q16
dρLabelID
C2×C42Q16128C2xC4:2Q16128,1765


Non-split extensions G=N.Q with N=C2 and Q=C42Q16
extensionφ:Q→Aut NdρLabelID
C2.1(C42Q16) = C42.99D4central extension (φ=1)128C2.1(C4:2Q16)128,535
C2.2(C42Q16) = (C2×C4)⋊9Q16central extension (φ=1)128C2.2(C4:2Q16)128,610
C2.3(C42Q16) = C2.(C4×Q16)central extension (φ=1)128C2.3(C4:2Q16)128,660
C2.4(C42Q16) = C42.29Q8central extension (φ=1)128C2.4(C4:2Q16)128,679
C2.5(C42Q16) = C42.117D4central extension (φ=1)128C2.5(C4:2Q16)128,713
C2.6(C42Q16) = C88Q16central stem extension (φ=1)128C2.6(C4:2Q16)128,404
C2.7(C42Q16) = C87Q16central stem extension (φ=1)128C2.7(C4:2Q16)128,406
C2.8(C42Q16) = Q8.1Q16central stem extension (φ=1)128C2.8(C4:2Q16)128,408
C2.9(C42Q16) = C8⋊Q16central stem extension (φ=1)128C2.9(C4:2Q16)128,424
C2.10(C42Q16) = C82Q16central stem extension (φ=1)128C2.10(C4:2Q16)128,426
C2.11(C42Q16) = C8.3Q16central stem extension (φ=1)128C2.11(C4:2Q16)128,428
C2.12(C42Q16) = (C2×C4)⋊2Q16central stem extension (φ=1)128C2.12(C4:2Q16)128,748
C2.13(C42Q16) = C4⋊C4.95D4central stem extension (φ=1)128C2.13(C4:2Q16)128,775
C2.14(C42Q16) = (C2×C4)⋊3Q16central stem extension (φ=1)128C2.14(C4:2Q16)128,788
C2.15(C42Q16) = (C2×C8).52D4central stem extension (φ=1)128C2.15(C4:2Q16)128,800
C2.16(C42Q16) = (C2×C4).19Q16central stem extension (φ=1)128C2.16(C4:2Q16)128,804
C2.17(C42Q16) = (C2×C8).1Q8central stem extension (φ=1)128C2.17(C4:2Q16)128,815

׿
×
𝔽