p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊1Q16, C42.243C23, C4⋊C4.65D4, (C2×C8).95D4, (C2×Q8).58D4, C4.42(C2×Q16), C8⋊3Q8.1C2, C8⋊4Q8.2C2, C8⋊1C8.11C2, C4⋊C8.31C22, C4.Q16.6C2, C4⋊2Q16.7C2, C4⋊Q8.64C22, C2.11(C8⋊D4), C4.43(C8⋊C22), (C4×C8).146C22, C2.9(C4⋊2Q16), C4.10D8.7C2, C4.6Q16.5C2, (C4×Q8).46C22, C4.73(C8.C22), C2.19(D4.3D4), C22.204(C4⋊D4), (C2×C4).28(C4○D4), (C2×C4).1278(C2×D4), SmallGroup(128,424)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊Q16
G = < a,b,c | a8=b8=1, c2=b4, bab-1=a-1, cac-1=a5, cbc-1=b-1 >
Subgroups: 152 in 73 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C4.6Q16, C8⋊1C8, C8⋊4Q8, C4⋊2Q16, C4.Q16, C8⋊3Q8, C8⋊Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C8⋊C22, C8.C22, C4⋊2Q16, C8⋊D4, D4.3D4, C8⋊Q16
Character table of C8⋊Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | √2 | -√2 | -√2 | 0 | 0 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -√2 | -√2 | √2 | 0 | 0 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -√2 | √2 | √2 | 0 | 0 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | √2 | √2 | -√2 | 0 | 0 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | complex lifted from C4○D4 |
ρ19 | 4 | -4 | 4 | -4 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | -4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ21 | 4 | -4 | 4 | -4 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 0 | 0 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 0 | 0 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 41 78 118 30 81 57 14)(2 48 79 117 31 88 58 13)(3 47 80 116 32 87 59 12)(4 46 73 115 25 86 60 11)(5 45 74 114 26 85 61 10)(6 44 75 113 27 84 62 9)(7 43 76 120 28 83 63 16)(8 42 77 119 29 82 64 15)(17 90 69 105 56 34 102 124)(18 89 70 112 49 33 103 123)(19 96 71 111 50 40 104 122)(20 95 72 110 51 39 97 121)(21 94 65 109 52 38 98 128)(22 93 66 108 53 37 99 127)(23 92 67 107 54 36 100 126)(24 91 68 106 55 35 101 125)
(1 18 30 49)(2 23 31 54)(3 20 32 51)(4 17 25 56)(5 22 26 53)(6 19 27 50)(7 24 28 55)(8 21 29 52)(9 96 113 40)(10 93 114 37)(11 90 115 34)(12 95 116 39)(13 92 117 36)(14 89 118 33)(15 94 119 38)(16 91 120 35)(41 123 81 112)(42 128 82 109)(43 125 83 106)(44 122 84 111)(45 127 85 108)(46 124 86 105)(47 121 87 110)(48 126 88 107)(57 70 78 103)(58 67 79 100)(59 72 80 97)(60 69 73 102)(61 66 74 99)(62 71 75 104)(63 68 76 101)(64 65 77 98)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,41,78,118,30,81,57,14)(2,48,79,117,31,88,58,13)(3,47,80,116,32,87,59,12)(4,46,73,115,25,86,60,11)(5,45,74,114,26,85,61,10)(6,44,75,113,27,84,62,9)(7,43,76,120,28,83,63,16)(8,42,77,119,29,82,64,15)(17,90,69,105,56,34,102,124)(18,89,70,112,49,33,103,123)(19,96,71,111,50,40,104,122)(20,95,72,110,51,39,97,121)(21,94,65,109,52,38,98,128)(22,93,66,108,53,37,99,127)(23,92,67,107,54,36,100,126)(24,91,68,106,55,35,101,125), (1,18,30,49)(2,23,31,54)(3,20,32,51)(4,17,25,56)(5,22,26,53)(6,19,27,50)(7,24,28,55)(8,21,29,52)(9,96,113,40)(10,93,114,37)(11,90,115,34)(12,95,116,39)(13,92,117,36)(14,89,118,33)(15,94,119,38)(16,91,120,35)(41,123,81,112)(42,128,82,109)(43,125,83,106)(44,122,84,111)(45,127,85,108)(46,124,86,105)(47,121,87,110)(48,126,88,107)(57,70,78,103)(58,67,79,100)(59,72,80,97)(60,69,73,102)(61,66,74,99)(62,71,75,104)(63,68,76,101)(64,65,77,98)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,41,78,118,30,81,57,14)(2,48,79,117,31,88,58,13)(3,47,80,116,32,87,59,12)(4,46,73,115,25,86,60,11)(5,45,74,114,26,85,61,10)(6,44,75,113,27,84,62,9)(7,43,76,120,28,83,63,16)(8,42,77,119,29,82,64,15)(17,90,69,105,56,34,102,124)(18,89,70,112,49,33,103,123)(19,96,71,111,50,40,104,122)(20,95,72,110,51,39,97,121)(21,94,65,109,52,38,98,128)(22,93,66,108,53,37,99,127)(23,92,67,107,54,36,100,126)(24,91,68,106,55,35,101,125), (1,18,30,49)(2,23,31,54)(3,20,32,51)(4,17,25,56)(5,22,26,53)(6,19,27,50)(7,24,28,55)(8,21,29,52)(9,96,113,40)(10,93,114,37)(11,90,115,34)(12,95,116,39)(13,92,117,36)(14,89,118,33)(15,94,119,38)(16,91,120,35)(41,123,81,112)(42,128,82,109)(43,125,83,106)(44,122,84,111)(45,127,85,108)(46,124,86,105)(47,121,87,110)(48,126,88,107)(57,70,78,103)(58,67,79,100)(59,72,80,97)(60,69,73,102)(61,66,74,99)(62,71,75,104)(63,68,76,101)(64,65,77,98) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,41,78,118,30,81,57,14),(2,48,79,117,31,88,58,13),(3,47,80,116,32,87,59,12),(4,46,73,115,25,86,60,11),(5,45,74,114,26,85,61,10),(6,44,75,113,27,84,62,9),(7,43,76,120,28,83,63,16),(8,42,77,119,29,82,64,15),(17,90,69,105,56,34,102,124),(18,89,70,112,49,33,103,123),(19,96,71,111,50,40,104,122),(20,95,72,110,51,39,97,121),(21,94,65,109,52,38,98,128),(22,93,66,108,53,37,99,127),(23,92,67,107,54,36,100,126),(24,91,68,106,55,35,101,125)], [(1,18,30,49),(2,23,31,54),(3,20,32,51),(4,17,25,56),(5,22,26,53),(6,19,27,50),(7,24,28,55),(8,21,29,52),(9,96,113,40),(10,93,114,37),(11,90,115,34),(12,95,116,39),(13,92,117,36),(14,89,118,33),(15,94,119,38),(16,91,120,35),(41,123,81,112),(42,128,82,109),(43,125,83,106),(44,122,84,111),(45,127,85,108),(46,124,86,105),(47,121,87,110),(48,126,88,107),(57,70,78,103),(58,67,79,100),(59,72,80,97),(60,69,73,102),(61,66,74,99),(62,71,75,104),(63,68,76,101),(64,65,77,98)]])
Matrix representation of C8⋊Q16 ►in GL8(𝔽17)
0 | 14 | 8 | 9 | 0 | 0 | 0 | 0 |
3 | 0 | 9 | 9 | 0 | 0 | 0 | 0 |
9 | 8 | 0 | 14 | 0 | 0 | 0 | 0 |
8 | 8 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 10 | 0 | 7 |
0 | 0 | 0 | 0 | 7 | 0 | 10 | 0 |
11 | 11 | 2 | 5 | 0 | 0 | 0 | 0 |
6 | 11 | 5 | 15 | 0 | 0 | 0 | 0 |
12 | 2 | 6 | 11 | 0 | 0 | 0 | 0 |
2 | 5 | 6 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 4 | 12 | 6 |
0 | 0 | 0 | 0 | 13 | 2 | 11 | 12 |
0 | 0 | 0 | 0 | 11 | 3 | 15 | 13 |
0 | 0 | 0 | 0 | 14 | 11 | 4 | 15 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 5 | 3 | 0 |
0 | 0 | 0 | 0 | 5 | 3 | 0 | 14 |
0 | 0 | 0 | 0 | 11 | 0 | 3 | 5 |
0 | 0 | 0 | 0 | 0 | 6 | 5 | 14 |
G:=sub<GL(8,GF(17))| [0,3,9,8,0,0,0,0,14,0,8,8,0,0,0,0,8,9,0,3,0,0,0,0,9,9,14,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,10,0,0,0,0,0,0,5,0,10,0,0,0,0,12,0,7,0],[11,6,12,2,0,0,0,0,11,11,2,5,0,0,0,0,2,5,6,6,0,0,0,0,5,15,11,6,0,0,0,0,0,0,0,0,2,13,11,14,0,0,0,0,4,2,3,11,0,0,0,0,12,11,15,4,0,0,0,0,6,12,13,15],[0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,14,5,11,0,0,0,0,0,5,3,0,6,0,0,0,0,3,0,3,5,0,0,0,0,0,14,5,14] >;
C8⋊Q16 in GAP, Magma, Sage, TeX
C_8\rtimes Q_{16}
% in TeX
G:=Group("C8:Q16");
// GroupNames label
G:=SmallGroup(128,424);
// by ID
G=gap.SmallGroup(128,424);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,64,422,387,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,b*a*b^-1=a^-1,c*a*c^-1=a^5,c*b*c^-1=b^-1>;
// generators/relations
Export