Copied to
clipboard

G = C8⋊Q16order 128 = 27

1st semidirect product of C8 and Q16 acting via Q16/C4=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C81Q16, C42.243C23, C4⋊C4.65D4, (C2×C8).95D4, (C2×Q8).58D4, C4.42(C2×Q16), C83Q8.1C2, C84Q8.2C2, C81C8.11C2, C4⋊C8.31C22, C4.Q16.6C2, C42Q16.7C2, C4⋊Q8.64C22, C2.11(C8⋊D4), C4.43(C8⋊C22), (C4×C8).146C22, C2.9(C42Q16), C4.10D8.7C2, C4.6Q16.5C2, (C4×Q8).46C22, C4.73(C8.C22), C2.19(D4.3D4), C22.204(C4⋊D4), (C2×C4).28(C4○D4), (C2×C4).1278(C2×D4), SmallGroup(128,424)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C8⋊Q16
C1C2C22C2×C4C42C4×Q8C84Q8 — C8⋊Q16
C1C22C42 — C8⋊Q16
C1C22C42 — C8⋊Q16
C1C22C22C42 — C8⋊Q16

Generators and relations for C8⋊Q16
 G = < a,b,c | a8=b8=1, c2=b4, bab-1=a-1, cac-1=a5, cbc-1=b-1 >

Subgroups: 152 in 73 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C4.6Q16, C81C8, C84Q8, C42Q16, C4.Q16, C83Q8, C8⋊Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C8⋊C22, C8.C22, C42Q16, C8⋊D4, D4.3D4, C8⋊Q16

Character table of C8⋊Q16

 class 12A2B2C4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F8G8H8I8J
 size 1111222248816164444888888
ρ111111111111111111111111    trivial
ρ211111111111-11-1-1-1-11-11-1-1-1    linear of order 2
ρ3111111111-1-1-11-1-1-1-1-11-1111    linear of order 2
ρ4111111111-1-1111111-1-1-1-1-1-1    linear of order 2
ρ511111111111-1-11111-1-1-111-1    linear of order 2
ρ6111111111111-1-1-1-1-1-11-1-1-11    linear of order 2
ρ7111111111-1-11-1-1-1-1-11-1111-1    linear of order 2
ρ8111111111-1-1-1-11111111-1-11    linear of order 2
ρ92222-22-22-22-2000000000000    orthogonal lifted from D4
ρ102222-22-22-2-22000000000000    orthogonal lifted from D4
ρ1122222-22-2-200002-2-22000000    orthogonal lifted from D4
ρ1222222-22-2-20000-222-2000000    orthogonal lifted from D4
ρ132-2-22-20200000002-202-2-2002    symplectic lifted from Q16, Schur index 2
ρ142-2-22-2020000000-220-2-22002    symplectic lifted from Q16, Schur index 2
ρ152-2-22-20200000002-20-22200-2    symplectic lifted from Q16, Schur index 2
ρ162-2-22-2020000000-22022-200-2    symplectic lifted from Q16, Schur index 2
ρ172222-2-2-2-22000000000002i-2i0    complex lifted from C4○D4
ρ182222-2-2-2-2200000000000-2i2i0    complex lifted from C4○D4
ρ194-44-4040-4000000000000000    orthogonal lifted from C8⋊C22
ρ204-4-4440-40000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ214-44-40-404000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2244-4-40000000002-200-2-2000000    complex lifted from D4.3D4
ρ2344-4-4000000000-2-2002-2000000    complex lifted from D4.3D4

Smallest permutation representation of C8⋊Q16
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 41 78 118 30 81 57 14)(2 48 79 117 31 88 58 13)(3 47 80 116 32 87 59 12)(4 46 73 115 25 86 60 11)(5 45 74 114 26 85 61 10)(6 44 75 113 27 84 62 9)(7 43 76 120 28 83 63 16)(8 42 77 119 29 82 64 15)(17 90 69 105 56 34 102 124)(18 89 70 112 49 33 103 123)(19 96 71 111 50 40 104 122)(20 95 72 110 51 39 97 121)(21 94 65 109 52 38 98 128)(22 93 66 108 53 37 99 127)(23 92 67 107 54 36 100 126)(24 91 68 106 55 35 101 125)
(1 18 30 49)(2 23 31 54)(3 20 32 51)(4 17 25 56)(5 22 26 53)(6 19 27 50)(7 24 28 55)(8 21 29 52)(9 96 113 40)(10 93 114 37)(11 90 115 34)(12 95 116 39)(13 92 117 36)(14 89 118 33)(15 94 119 38)(16 91 120 35)(41 123 81 112)(42 128 82 109)(43 125 83 106)(44 122 84 111)(45 127 85 108)(46 124 86 105)(47 121 87 110)(48 126 88 107)(57 70 78 103)(58 67 79 100)(59 72 80 97)(60 69 73 102)(61 66 74 99)(62 71 75 104)(63 68 76 101)(64 65 77 98)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,41,78,118,30,81,57,14)(2,48,79,117,31,88,58,13)(3,47,80,116,32,87,59,12)(4,46,73,115,25,86,60,11)(5,45,74,114,26,85,61,10)(6,44,75,113,27,84,62,9)(7,43,76,120,28,83,63,16)(8,42,77,119,29,82,64,15)(17,90,69,105,56,34,102,124)(18,89,70,112,49,33,103,123)(19,96,71,111,50,40,104,122)(20,95,72,110,51,39,97,121)(21,94,65,109,52,38,98,128)(22,93,66,108,53,37,99,127)(23,92,67,107,54,36,100,126)(24,91,68,106,55,35,101,125), (1,18,30,49)(2,23,31,54)(3,20,32,51)(4,17,25,56)(5,22,26,53)(6,19,27,50)(7,24,28,55)(8,21,29,52)(9,96,113,40)(10,93,114,37)(11,90,115,34)(12,95,116,39)(13,92,117,36)(14,89,118,33)(15,94,119,38)(16,91,120,35)(41,123,81,112)(42,128,82,109)(43,125,83,106)(44,122,84,111)(45,127,85,108)(46,124,86,105)(47,121,87,110)(48,126,88,107)(57,70,78,103)(58,67,79,100)(59,72,80,97)(60,69,73,102)(61,66,74,99)(62,71,75,104)(63,68,76,101)(64,65,77,98)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,41,78,118,30,81,57,14)(2,48,79,117,31,88,58,13)(3,47,80,116,32,87,59,12)(4,46,73,115,25,86,60,11)(5,45,74,114,26,85,61,10)(6,44,75,113,27,84,62,9)(7,43,76,120,28,83,63,16)(8,42,77,119,29,82,64,15)(17,90,69,105,56,34,102,124)(18,89,70,112,49,33,103,123)(19,96,71,111,50,40,104,122)(20,95,72,110,51,39,97,121)(21,94,65,109,52,38,98,128)(22,93,66,108,53,37,99,127)(23,92,67,107,54,36,100,126)(24,91,68,106,55,35,101,125), (1,18,30,49)(2,23,31,54)(3,20,32,51)(4,17,25,56)(5,22,26,53)(6,19,27,50)(7,24,28,55)(8,21,29,52)(9,96,113,40)(10,93,114,37)(11,90,115,34)(12,95,116,39)(13,92,117,36)(14,89,118,33)(15,94,119,38)(16,91,120,35)(41,123,81,112)(42,128,82,109)(43,125,83,106)(44,122,84,111)(45,127,85,108)(46,124,86,105)(47,121,87,110)(48,126,88,107)(57,70,78,103)(58,67,79,100)(59,72,80,97)(60,69,73,102)(61,66,74,99)(62,71,75,104)(63,68,76,101)(64,65,77,98) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,41,78,118,30,81,57,14),(2,48,79,117,31,88,58,13),(3,47,80,116,32,87,59,12),(4,46,73,115,25,86,60,11),(5,45,74,114,26,85,61,10),(6,44,75,113,27,84,62,9),(7,43,76,120,28,83,63,16),(8,42,77,119,29,82,64,15),(17,90,69,105,56,34,102,124),(18,89,70,112,49,33,103,123),(19,96,71,111,50,40,104,122),(20,95,72,110,51,39,97,121),(21,94,65,109,52,38,98,128),(22,93,66,108,53,37,99,127),(23,92,67,107,54,36,100,126),(24,91,68,106,55,35,101,125)], [(1,18,30,49),(2,23,31,54),(3,20,32,51),(4,17,25,56),(5,22,26,53),(6,19,27,50),(7,24,28,55),(8,21,29,52),(9,96,113,40),(10,93,114,37),(11,90,115,34),(12,95,116,39),(13,92,117,36),(14,89,118,33),(15,94,119,38),(16,91,120,35),(41,123,81,112),(42,128,82,109),(43,125,83,106),(44,122,84,111),(45,127,85,108),(46,124,86,105),(47,121,87,110),(48,126,88,107),(57,70,78,103),(58,67,79,100),(59,72,80,97),(60,69,73,102),(61,66,74,99),(62,71,75,104),(63,68,76,101),(64,65,77,98)]])

Matrix representation of C8⋊Q16 in GL8(𝔽17)

014890000
30990000
980140000
88300000
000000012
00000050
000001007
000070100
,
1111250000
6115150000
1226110000
25660000
000024126
00001321112
00001131513
00001411415
,
00100000
00010000
160000000
016000000
000014530
000053014
000011035
000006514

G:=sub<GL(8,GF(17))| [0,3,9,8,0,0,0,0,14,0,8,8,0,0,0,0,8,9,0,3,0,0,0,0,9,9,14,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,10,0,0,0,0,0,0,5,0,10,0,0,0,0,12,0,7,0],[11,6,12,2,0,0,0,0,11,11,2,5,0,0,0,0,2,5,6,6,0,0,0,0,5,15,11,6,0,0,0,0,0,0,0,0,2,13,11,14,0,0,0,0,4,2,3,11,0,0,0,0,12,11,15,4,0,0,0,0,6,12,13,15],[0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,14,5,11,0,0,0,0,0,5,3,0,6,0,0,0,0,3,0,3,5,0,0,0,0,0,14,5,14] >;

C8⋊Q16 in GAP, Magma, Sage, TeX

C_8\rtimes Q_{16}
% in TeX

G:=Group("C8:Q16");
// GroupNames label

G:=SmallGroup(128,424);
// by ID

G=gap.SmallGroup(128,424);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,64,422,387,352,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,b*a*b^-1=a^-1,c*a*c^-1=a^5,c*b*c^-1=b^-1>;
// generators/relations

Export

Character table of C8⋊Q16 in TeX

׿
×
𝔽