Copied to
clipboard

G = C88Q16order 128 = 27

2nd semidirect product of C8 and Q16 acting via Q16/Q8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C88Q16, Q8.1SD16, C42.223C23, C82C8.2C2, C4⋊C4.198D4, (C2×C8).366D4, (C8×Q8).12C2, C4.39(C2×Q16), C83Q8.5C2, C4.67(C4○D8), C4⋊C8.21C22, (C2×Q8).149D4, C4.Q16.3C2, C42Q16.4C2, C4.39(C2×SD16), C4⋊Q8.46C22, C2.11(C88D4), (C4×C8).252C22, C2.6(C42Q16), C4.10D8.2C2, C4.6Q16.2C2, (C4×Q8).264C22, C2.11(D4.3D4), C4.111(C8.C22), C22.184(C4⋊D4), (C2×C4).8(C4○D4), (C2×C4).1258(C2×D4), SmallGroup(128,404)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C88Q16
C1C2C22C2×C4C42C4×Q8C8×Q8 — C88Q16
C1C22C42 — C88Q16
C1C22C42 — C88Q16
C1C22C22C42 — C88Q16

Generators and relations for C88Q16
 G = < a,b,c | a8=b8=1, c2=b4, bab-1=a3, ac=ca, cbc-1=b-1 >

Subgroups: 152 in 75 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C4.6Q16, C82C8, C8×Q8, C42Q16, C4.Q16, C83Q8, C88Q16
Quotients: C1, C2, C22, D4, C23, SD16, Q16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C2×Q16, C4○D8, C8.C22, C42Q16, C88D4, D4.3D4, C88Q16

Character table of C88Q16

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J4K8A8B8C8D8E8F8G8H8I8J8K8L8M8N
 size 1111222244444161622224444448888
ρ111111111111111111111111111111    trivial
ρ211111111-1-1-11-1-11-1-1-1-1111-1-11-11-11    linear of order 2
ρ31111111111111-11-1-1-1-1-1-1-1-1-1-11-11-1    linear of order 2
ρ411111111-1-1-11-1111111-1-1-111-1-1-1-1-1    linear of order 2
ρ511111111111111-1-1-1-1-1-1-1-1-1-1-1-11-11    linear of order 2
ρ611111111-1-1-11-1-1-11111-1-1-111-11111    linear of order 2
ρ71111111111111-1-11111111111-1-1-1-1    linear of order 2
ρ811111111-1-1-11-11-1-1-1-1-1111-1-111-11-1    linear of order 2
ρ922222-22-2000-2000-2-2-2-20002200000    orthogonal lifted from D4
ρ102222-22-222-2-2-220000000000000000    orthogonal lifted from D4
ρ112222-22-22-222-2-20000000000000000    orthogonal lifted from D4
ρ1222222-22-2000-20002222000-2-200000    orthogonal lifted from D4
ρ132-22-2-20200000000-22-220000002-2-22    symplectic lifted from Q16, Schur index 2
ρ142-22-2-202000000002-22-200000022-2-2    symplectic lifted from Q16, Schur index 2
ρ152-22-2-202000000002-22-2000000-2-222    symplectic lifted from Q16, Schur index 2
ρ162-22-2-20200000000-22-22000000-222-2    symplectic lifted from Q16, Schur index 2
ρ1722-2-2020-202-20000--2-2-2--2--2-2-2-2--2--20000    complex lifted from SD16
ρ182222-2-2-2-2000200000002i2i-2i00-2i0000    complex lifted from C4○D4
ρ192222-2-2-2-200020000000-2i-2i2i002i0000    complex lifted from C4○D4
ρ2022-2-2020-20-220000--2-2-2--2-2--2--2-2--2-20000    complex lifted from SD16
ρ2122-2-20-2022i000-2i00--2-2-2--22-22--2-2-20000    complex lifted from C4○D8
ρ2222-2-20-202-2i0002i00-2--2--2-22-22-2--2-20000    complex lifted from C4○D8
ρ2322-2-20-2022i000-2i00-2--2--2-2-22-2-2--220000    complex lifted from C4○D8
ρ2422-2-2020-20-220000-2--2--2-2--2-2-2--2-2--20000    complex lifted from SD16
ρ2522-2-2020-202-20000-2--2--2-2-2--2--2--2-2-20000    complex lifted from SD16
ρ2622-2-20-202-2i0002i00--2-2-2--2-22-2--2-220000    complex lifted from C4○D8
ρ274-44-440-40000000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ284-4-44000000000002-22-2-2-2-2-20000000000    complex lifted from D4.3D4
ρ294-4-4400000000000-2-2-2-22-22-20000000000    complex lifted from D4.3D4

Smallest permutation representation of C88Q16
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 83 51 14 57 48 79 110)(2 86 52 9 58 43 80 105)(3 81 53 12 59 46 73 108)(4 84 54 15 60 41 74 111)(5 87 55 10 61 44 75 106)(6 82 56 13 62 47 76 109)(7 85 49 16 63 42 77 112)(8 88 50 11 64 45 78 107)(17 96 70 116 102 37 28 128)(18 91 71 119 103 40 29 123)(19 94 72 114 104 35 30 126)(20 89 65 117 97 38 31 121)(21 92 66 120 98 33 32 124)(22 95 67 115 99 36 25 127)(23 90 68 118 100 39 26 122)(24 93 69 113 101 34 27 125)
(1 103 57 18)(2 104 58 19)(3 97 59 20)(4 98 60 21)(5 99 61 22)(6 100 62 23)(7 101 63 24)(8 102 64 17)(9 94 105 35)(10 95 106 36)(11 96 107 37)(12 89 108 38)(13 90 109 39)(14 91 110 40)(15 92 111 33)(16 93 112 34)(25 55 67 75)(26 56 68 76)(27 49 69 77)(28 50 70 78)(29 51 71 79)(30 52 72 80)(31 53 65 73)(32 54 66 74)(41 124 84 120)(42 125 85 113)(43 126 86 114)(44 127 87 115)(45 128 88 116)(46 121 81 117)(47 122 82 118)(48 123 83 119)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,83,51,14,57,48,79,110)(2,86,52,9,58,43,80,105)(3,81,53,12,59,46,73,108)(4,84,54,15,60,41,74,111)(5,87,55,10,61,44,75,106)(6,82,56,13,62,47,76,109)(7,85,49,16,63,42,77,112)(8,88,50,11,64,45,78,107)(17,96,70,116,102,37,28,128)(18,91,71,119,103,40,29,123)(19,94,72,114,104,35,30,126)(20,89,65,117,97,38,31,121)(21,92,66,120,98,33,32,124)(22,95,67,115,99,36,25,127)(23,90,68,118,100,39,26,122)(24,93,69,113,101,34,27,125), (1,103,57,18)(2,104,58,19)(3,97,59,20)(4,98,60,21)(5,99,61,22)(6,100,62,23)(7,101,63,24)(8,102,64,17)(9,94,105,35)(10,95,106,36)(11,96,107,37)(12,89,108,38)(13,90,109,39)(14,91,110,40)(15,92,111,33)(16,93,112,34)(25,55,67,75)(26,56,68,76)(27,49,69,77)(28,50,70,78)(29,51,71,79)(30,52,72,80)(31,53,65,73)(32,54,66,74)(41,124,84,120)(42,125,85,113)(43,126,86,114)(44,127,87,115)(45,128,88,116)(46,121,81,117)(47,122,82,118)(48,123,83,119)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,83,51,14,57,48,79,110)(2,86,52,9,58,43,80,105)(3,81,53,12,59,46,73,108)(4,84,54,15,60,41,74,111)(5,87,55,10,61,44,75,106)(6,82,56,13,62,47,76,109)(7,85,49,16,63,42,77,112)(8,88,50,11,64,45,78,107)(17,96,70,116,102,37,28,128)(18,91,71,119,103,40,29,123)(19,94,72,114,104,35,30,126)(20,89,65,117,97,38,31,121)(21,92,66,120,98,33,32,124)(22,95,67,115,99,36,25,127)(23,90,68,118,100,39,26,122)(24,93,69,113,101,34,27,125), (1,103,57,18)(2,104,58,19)(3,97,59,20)(4,98,60,21)(5,99,61,22)(6,100,62,23)(7,101,63,24)(8,102,64,17)(9,94,105,35)(10,95,106,36)(11,96,107,37)(12,89,108,38)(13,90,109,39)(14,91,110,40)(15,92,111,33)(16,93,112,34)(25,55,67,75)(26,56,68,76)(27,49,69,77)(28,50,70,78)(29,51,71,79)(30,52,72,80)(31,53,65,73)(32,54,66,74)(41,124,84,120)(42,125,85,113)(43,126,86,114)(44,127,87,115)(45,128,88,116)(46,121,81,117)(47,122,82,118)(48,123,83,119) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,83,51,14,57,48,79,110),(2,86,52,9,58,43,80,105),(3,81,53,12,59,46,73,108),(4,84,54,15,60,41,74,111),(5,87,55,10,61,44,75,106),(6,82,56,13,62,47,76,109),(7,85,49,16,63,42,77,112),(8,88,50,11,64,45,78,107),(17,96,70,116,102,37,28,128),(18,91,71,119,103,40,29,123),(19,94,72,114,104,35,30,126),(20,89,65,117,97,38,31,121),(21,92,66,120,98,33,32,124),(22,95,67,115,99,36,25,127),(23,90,68,118,100,39,26,122),(24,93,69,113,101,34,27,125)], [(1,103,57,18),(2,104,58,19),(3,97,59,20),(4,98,60,21),(5,99,61,22),(6,100,62,23),(7,101,63,24),(8,102,64,17),(9,94,105,35),(10,95,106,36),(11,96,107,37),(12,89,108,38),(13,90,109,39),(14,91,110,40),(15,92,111,33),(16,93,112,34),(25,55,67,75),(26,56,68,76),(27,49,69,77),(28,50,70,78),(29,51,71,79),(30,52,72,80),(31,53,65,73),(32,54,66,74),(41,124,84,120),(42,125,85,113),(43,126,86,114),(44,127,87,115),(45,128,88,116),(46,121,81,117),(47,122,82,118),(48,123,83,119)]])

Matrix representation of C88Q16 in GL4(𝔽17) generated by

1000
0100
00010
001210
,
9000
0200
0049
00013
,
0100
16000
00138
00134
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,12,0,0,10,10],[9,0,0,0,0,2,0,0,0,0,4,0,0,0,9,13],[0,16,0,0,1,0,0,0,0,0,13,13,0,0,8,4] >;

C88Q16 in GAP, Magma, Sage, TeX

C_8\rtimes_8Q_{16}
% in TeX

G:=Group("C8:8Q16");
// GroupNames label

G:=SmallGroup(128,404);
// by ID

G=gap.SmallGroup(128,404);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,64,422,352,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,b*a*b^-1=a^3,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Character table of C88Q16 in TeX

׿
×
𝔽