p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊8Q16, Q8.1SD16, C42.223C23, C8⋊2C8.2C2, C4⋊C4.198D4, (C2×C8).366D4, (C8×Q8).12C2, C4.39(C2×Q16), C8⋊3Q8.5C2, C4.67(C4○D8), C4⋊C8.21C22, (C2×Q8).149D4, C4.Q16.3C2, C4⋊2Q16.4C2, C4.39(C2×SD16), C4⋊Q8.46C22, C2.11(C8⋊8D4), (C4×C8).252C22, C2.6(C4⋊2Q16), C4.10D8.2C2, C4.6Q16.2C2, (C4×Q8).264C22, C2.11(D4.3D4), C4.111(C8.C22), C22.184(C4⋊D4), (C2×C4).8(C4○D4), (C2×C4).1258(C2×D4), SmallGroup(128,404)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊8Q16
G = < a,b,c | a8=b8=1, c2=b4, bab-1=a3, ac=ca, cbc-1=b-1 >
Subgroups: 152 in 75 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C4.6Q16, C8⋊2C8, C8×Q8, C4⋊2Q16, C4.Q16, C8⋊3Q8, C8⋊8Q16
Quotients: C1, C2, C22, D4, C23, SD16, Q16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C2×Q16, C4○D8, C8.C22, C4⋊2Q16, C8⋊8D4, D4.3D4, C8⋊8Q16
Character table of C8⋊8Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √2 | -√2 | √2 | -√-2 | √-2 | -√2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √2 | -√2 | √2 | √-2 | -√-2 | -√2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ23 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√2 | √2 | -√2 | √-2 | -√-2 | √2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ26 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√2 | √2 | -√2 | -√-2 | √-2 | √2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ27 | 4 | -4 | 4 | -4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 83 51 14 57 48 79 110)(2 86 52 9 58 43 80 105)(3 81 53 12 59 46 73 108)(4 84 54 15 60 41 74 111)(5 87 55 10 61 44 75 106)(6 82 56 13 62 47 76 109)(7 85 49 16 63 42 77 112)(8 88 50 11 64 45 78 107)(17 96 70 116 102 37 28 128)(18 91 71 119 103 40 29 123)(19 94 72 114 104 35 30 126)(20 89 65 117 97 38 31 121)(21 92 66 120 98 33 32 124)(22 95 67 115 99 36 25 127)(23 90 68 118 100 39 26 122)(24 93 69 113 101 34 27 125)
(1 103 57 18)(2 104 58 19)(3 97 59 20)(4 98 60 21)(5 99 61 22)(6 100 62 23)(7 101 63 24)(8 102 64 17)(9 94 105 35)(10 95 106 36)(11 96 107 37)(12 89 108 38)(13 90 109 39)(14 91 110 40)(15 92 111 33)(16 93 112 34)(25 55 67 75)(26 56 68 76)(27 49 69 77)(28 50 70 78)(29 51 71 79)(30 52 72 80)(31 53 65 73)(32 54 66 74)(41 124 84 120)(42 125 85 113)(43 126 86 114)(44 127 87 115)(45 128 88 116)(46 121 81 117)(47 122 82 118)(48 123 83 119)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,83,51,14,57,48,79,110)(2,86,52,9,58,43,80,105)(3,81,53,12,59,46,73,108)(4,84,54,15,60,41,74,111)(5,87,55,10,61,44,75,106)(6,82,56,13,62,47,76,109)(7,85,49,16,63,42,77,112)(8,88,50,11,64,45,78,107)(17,96,70,116,102,37,28,128)(18,91,71,119,103,40,29,123)(19,94,72,114,104,35,30,126)(20,89,65,117,97,38,31,121)(21,92,66,120,98,33,32,124)(22,95,67,115,99,36,25,127)(23,90,68,118,100,39,26,122)(24,93,69,113,101,34,27,125), (1,103,57,18)(2,104,58,19)(3,97,59,20)(4,98,60,21)(5,99,61,22)(6,100,62,23)(7,101,63,24)(8,102,64,17)(9,94,105,35)(10,95,106,36)(11,96,107,37)(12,89,108,38)(13,90,109,39)(14,91,110,40)(15,92,111,33)(16,93,112,34)(25,55,67,75)(26,56,68,76)(27,49,69,77)(28,50,70,78)(29,51,71,79)(30,52,72,80)(31,53,65,73)(32,54,66,74)(41,124,84,120)(42,125,85,113)(43,126,86,114)(44,127,87,115)(45,128,88,116)(46,121,81,117)(47,122,82,118)(48,123,83,119)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,83,51,14,57,48,79,110)(2,86,52,9,58,43,80,105)(3,81,53,12,59,46,73,108)(4,84,54,15,60,41,74,111)(5,87,55,10,61,44,75,106)(6,82,56,13,62,47,76,109)(7,85,49,16,63,42,77,112)(8,88,50,11,64,45,78,107)(17,96,70,116,102,37,28,128)(18,91,71,119,103,40,29,123)(19,94,72,114,104,35,30,126)(20,89,65,117,97,38,31,121)(21,92,66,120,98,33,32,124)(22,95,67,115,99,36,25,127)(23,90,68,118,100,39,26,122)(24,93,69,113,101,34,27,125), (1,103,57,18)(2,104,58,19)(3,97,59,20)(4,98,60,21)(5,99,61,22)(6,100,62,23)(7,101,63,24)(8,102,64,17)(9,94,105,35)(10,95,106,36)(11,96,107,37)(12,89,108,38)(13,90,109,39)(14,91,110,40)(15,92,111,33)(16,93,112,34)(25,55,67,75)(26,56,68,76)(27,49,69,77)(28,50,70,78)(29,51,71,79)(30,52,72,80)(31,53,65,73)(32,54,66,74)(41,124,84,120)(42,125,85,113)(43,126,86,114)(44,127,87,115)(45,128,88,116)(46,121,81,117)(47,122,82,118)(48,123,83,119) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,83,51,14,57,48,79,110),(2,86,52,9,58,43,80,105),(3,81,53,12,59,46,73,108),(4,84,54,15,60,41,74,111),(5,87,55,10,61,44,75,106),(6,82,56,13,62,47,76,109),(7,85,49,16,63,42,77,112),(8,88,50,11,64,45,78,107),(17,96,70,116,102,37,28,128),(18,91,71,119,103,40,29,123),(19,94,72,114,104,35,30,126),(20,89,65,117,97,38,31,121),(21,92,66,120,98,33,32,124),(22,95,67,115,99,36,25,127),(23,90,68,118,100,39,26,122),(24,93,69,113,101,34,27,125)], [(1,103,57,18),(2,104,58,19),(3,97,59,20),(4,98,60,21),(5,99,61,22),(6,100,62,23),(7,101,63,24),(8,102,64,17),(9,94,105,35),(10,95,106,36),(11,96,107,37),(12,89,108,38),(13,90,109,39),(14,91,110,40),(15,92,111,33),(16,93,112,34),(25,55,67,75),(26,56,68,76),(27,49,69,77),(28,50,70,78),(29,51,71,79),(30,52,72,80),(31,53,65,73),(32,54,66,74),(41,124,84,120),(42,125,85,113),(43,126,86,114),(44,127,87,115),(45,128,88,116),(46,121,81,117),(47,122,82,118),(48,123,83,119)]])
Matrix representation of C8⋊8Q16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 10 |
0 | 0 | 12 | 10 |
9 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 4 | 9 |
0 | 0 | 0 | 13 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 13 | 8 |
0 | 0 | 13 | 4 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,12,0,0,10,10],[9,0,0,0,0,2,0,0,0,0,4,0,0,0,9,13],[0,16,0,0,1,0,0,0,0,0,13,13,0,0,8,4] >;
C8⋊8Q16 in GAP, Magma, Sage, TeX
C_8\rtimes_8Q_{16}
% in TeX
G:=Group("C8:8Q16");
// GroupNames label
G:=SmallGroup(128,404);
// by ID
G=gap.SmallGroup(128,404);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,64,422,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,b*a*b^-1=a^3,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export