p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊7Q16, Q8.1D8, C42.225C23, C4.34(C2×D8), (C8×Q8).5C2, C8⋊1C8.7C2, C4⋊C4.200D4, (C2×C8).344D4, C8⋊2Q8.4C2, C4.40(C2×Q16), C4.87(C4○D8), C2.9(C8⋊7D4), C4⋊C8.22C22, (C4×C8).54C22, (C2×Q8).150D4, C4⋊2Q16.5C2, C4⋊Q8.48C22, C2.7(C4⋊2Q16), C4.10D8.3C2, C2.9(D4.5D4), (C4×Q8).265C22, C4.113(C8.C22), C22.186(C4⋊D4), (C2×C4).10(C4○D4), (C2×C4).1260(C2×D4), SmallGroup(128,406)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊7Q16
G = < a,b,c | a8=b8=1, c2=b4, bab-1=a-1, ac=ca, cbc-1=b-1 >
Subgroups: 160 in 78 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C4⋊C8, C2.D8, C4×Q8, C4⋊Q8, C2×Q16, C4.10D8, C8⋊1C8, C8×Q8, C4⋊2Q16, C8⋊2Q8, C8⋊7Q16
Quotients: C1, C2, C22, D4, C23, D8, Q16, C2×D4, C4○D4, C4⋊D4, C2×D8, C2×Q16, C4○D8, C8.C22, C4⋊2Q16, C8⋊7D4, D4.5D4, C8⋊7Q16
Character table of C8⋊7Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ23 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ24 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 4 | -4 | 4 | -4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 16 53 87 61 46 73 106)(2 15 54 86 62 45 74 105)(3 14 55 85 63 44 75 112)(4 13 56 84 64 43 76 111)(5 12 49 83 57 42 77 110)(6 11 50 82 58 41 78 109)(7 10 51 81 59 48 79 108)(8 9 52 88 60 47 80 107)(17 126 68 120 102 39 30 92)(18 125 69 119 103 38 31 91)(19 124 70 118 104 37 32 90)(20 123 71 117 97 36 25 89)(21 122 72 116 98 35 26 96)(22 121 65 115 99 34 27 95)(23 128 66 114 100 33 28 94)(24 127 67 113 101 40 29 93)
(1 101 61 24)(2 102 62 17)(3 103 63 18)(4 104 64 19)(5 97 57 20)(6 98 58 21)(7 99 59 22)(8 100 60 23)(9 114 47 94)(10 115 48 95)(11 116 41 96)(12 117 42 89)(13 118 43 90)(14 119 44 91)(15 120 45 92)(16 113 46 93)(25 49 71 77)(26 50 72 78)(27 51 65 79)(28 52 66 80)(29 53 67 73)(30 54 68 74)(31 55 69 75)(32 56 70 76)(33 88 128 107)(34 81 121 108)(35 82 122 109)(36 83 123 110)(37 84 124 111)(38 85 125 112)(39 86 126 105)(40 87 127 106)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,16,53,87,61,46,73,106)(2,15,54,86,62,45,74,105)(3,14,55,85,63,44,75,112)(4,13,56,84,64,43,76,111)(5,12,49,83,57,42,77,110)(6,11,50,82,58,41,78,109)(7,10,51,81,59,48,79,108)(8,9,52,88,60,47,80,107)(17,126,68,120,102,39,30,92)(18,125,69,119,103,38,31,91)(19,124,70,118,104,37,32,90)(20,123,71,117,97,36,25,89)(21,122,72,116,98,35,26,96)(22,121,65,115,99,34,27,95)(23,128,66,114,100,33,28,94)(24,127,67,113,101,40,29,93), (1,101,61,24)(2,102,62,17)(3,103,63,18)(4,104,64,19)(5,97,57,20)(6,98,58,21)(7,99,59,22)(8,100,60,23)(9,114,47,94)(10,115,48,95)(11,116,41,96)(12,117,42,89)(13,118,43,90)(14,119,44,91)(15,120,45,92)(16,113,46,93)(25,49,71,77)(26,50,72,78)(27,51,65,79)(28,52,66,80)(29,53,67,73)(30,54,68,74)(31,55,69,75)(32,56,70,76)(33,88,128,107)(34,81,121,108)(35,82,122,109)(36,83,123,110)(37,84,124,111)(38,85,125,112)(39,86,126,105)(40,87,127,106)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,16,53,87,61,46,73,106)(2,15,54,86,62,45,74,105)(3,14,55,85,63,44,75,112)(4,13,56,84,64,43,76,111)(5,12,49,83,57,42,77,110)(6,11,50,82,58,41,78,109)(7,10,51,81,59,48,79,108)(8,9,52,88,60,47,80,107)(17,126,68,120,102,39,30,92)(18,125,69,119,103,38,31,91)(19,124,70,118,104,37,32,90)(20,123,71,117,97,36,25,89)(21,122,72,116,98,35,26,96)(22,121,65,115,99,34,27,95)(23,128,66,114,100,33,28,94)(24,127,67,113,101,40,29,93), (1,101,61,24)(2,102,62,17)(3,103,63,18)(4,104,64,19)(5,97,57,20)(6,98,58,21)(7,99,59,22)(8,100,60,23)(9,114,47,94)(10,115,48,95)(11,116,41,96)(12,117,42,89)(13,118,43,90)(14,119,44,91)(15,120,45,92)(16,113,46,93)(25,49,71,77)(26,50,72,78)(27,51,65,79)(28,52,66,80)(29,53,67,73)(30,54,68,74)(31,55,69,75)(32,56,70,76)(33,88,128,107)(34,81,121,108)(35,82,122,109)(36,83,123,110)(37,84,124,111)(38,85,125,112)(39,86,126,105)(40,87,127,106) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,16,53,87,61,46,73,106),(2,15,54,86,62,45,74,105),(3,14,55,85,63,44,75,112),(4,13,56,84,64,43,76,111),(5,12,49,83,57,42,77,110),(6,11,50,82,58,41,78,109),(7,10,51,81,59,48,79,108),(8,9,52,88,60,47,80,107),(17,126,68,120,102,39,30,92),(18,125,69,119,103,38,31,91),(19,124,70,118,104,37,32,90),(20,123,71,117,97,36,25,89),(21,122,72,116,98,35,26,96),(22,121,65,115,99,34,27,95),(23,128,66,114,100,33,28,94),(24,127,67,113,101,40,29,93)], [(1,101,61,24),(2,102,62,17),(3,103,63,18),(4,104,64,19),(5,97,57,20),(6,98,58,21),(7,99,59,22),(8,100,60,23),(9,114,47,94),(10,115,48,95),(11,116,41,96),(12,117,42,89),(13,118,43,90),(14,119,44,91),(15,120,45,92),(16,113,46,93),(25,49,71,77),(26,50,72,78),(27,51,65,79),(28,52,66,80),(29,53,67,73),(30,54,68,74),(31,55,69,75),(32,56,70,76),(33,88,128,107),(34,81,121,108),(35,82,122,109),(36,83,123,110),(37,84,124,111),(38,85,125,112),(39,86,126,105),(40,87,127,106)]])
Matrix representation of C8⋊7Q16 ►in GL4(𝔽17) generated by
2 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 11 | 11 |
0 | 0 | 3 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 11 | 3 |
0 | 0 | 16 | 6 |
G:=sub<GL(4,GF(17))| [2,0,0,0,0,9,0,0,0,0,16,0,0,0,0,16],[0,16,0,0,1,0,0,0,0,0,11,3,0,0,11,0],[1,0,0,0,0,16,0,0,0,0,11,16,0,0,3,6] >;
C8⋊7Q16 in GAP, Magma, Sage, TeX
C_8\rtimes_7Q_{16}
% in TeX
G:=Group("C8:7Q16");
// GroupNames label
G:=SmallGroup(128,406);
// by ID
G=gap.SmallGroup(128,406);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,288,422,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export