Copied to
clipboard

G = (C2×C8).1Q8order 128 = 27

1st non-split extension by C2×C8 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×C8).1Q8, (C2×C4).25D8, C2.9(C8⋊Q8), C4⋊C4.110D4, (C2×C4).20Q16, C2.5(C82Q8), C22.90(C2×D8), C2.17(C4⋊D8), (C22×C4).319D4, C23.933(C2×D4), C4.11(C22⋊Q8), C22.51(C4⋊Q8), C22.62(C2×Q16), C429C4.16C2, C2.17(C42Q16), C4.19(C42.C2), C22.4Q16.40C2, (C22×C8).118C22, (C2×C42).384C22, C2.9(C22.D8), C22.256(C4⋊D4), C22.153(C8⋊C22), (C22×C4).1467C23, C2.9(C23.48D4), C22.142(C8.C22), C22.7C42.25C2, C23.65C23.20C2, C2.5(C23.81C23), C22.123(C22.D4), (C2×C4).220(C2×Q8), (C2×C2.D8).15C2, (C2×C4).1063(C2×D4), (C2×C4).886(C4○D4), (C2×C4⋊C4).154C22, SmallGroup(128,815)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — (C2×C8).1Q8
C1C2C4C2×C4C22×C4C2×C4⋊C4C2×C2.D8 — (C2×C8).1Q8
C1C2C22×C4 — (C2×C8).1Q8
C1C23C2×C42 — (C2×C8).1Q8
C1C2C2C22×C4 — (C2×C8).1Q8

Generators and relations for (C2×C8).1Q8
 G = < a,b,c,d | a2=b8=c4=1, d2=ac2, ab=ba, ac=ca, ad=da, cbc-1=ab-1, dbd-1=b-1, dcd-1=ac-1 >

Subgroups: 232 in 115 conjugacy classes, 54 normal (28 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2.C42, C2.D8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.7C42, C22.4Q16, C429C4, C23.65C23, C2×C2.D8, (C2×C8).1Q8
Quotients: C1, C2, C22, D4, Q8, C23, D8, Q16, C2×D4, C2×Q8, C4○D4, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C4⋊Q8, C2×D8, C2×Q16, C8⋊C22, C8.C22, C23.81C23, C4⋊D8, C42Q16, C22.D8, C23.48D4, C82Q8, C8⋊Q8, (C2×C8).1Q8

Smallest permutation representation of (C2×C8).1Q8
Regular action on 128 points
Generators in S128
(1 126)(2 127)(3 128)(4 121)(5 122)(6 123)(7 124)(8 125)(9 55)(10 56)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 45)(18 46)(19 47)(20 48)(21 41)(22 42)(23 43)(24 44)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(31 33)(32 34)(57 111)(58 112)(59 105)(60 106)(61 107)(62 108)(63 109)(64 110)(65 115)(66 116)(67 117)(68 118)(69 119)(70 120)(71 113)(72 114)(73 100)(74 101)(75 102)(76 103)(77 104)(78 97)(79 98)(80 99)(81 89)(82 90)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 68 9 106)(2 117 10 59)(3 66 11 112)(4 115 12 57)(5 72 13 110)(6 113 14 63)(7 70 15 108)(8 119 16 61)(17 85 78 28)(18 92 79 37)(19 83 80 26)(20 90 73 35)(21 81 74 32)(22 96 75 33)(23 87 76 30)(24 94 77 39)(25 48 82 100)(27 46 84 98)(29 44 86 104)(31 42 88 102)(34 41 89 101)(36 47 91 99)(38 45 93 97)(40 43 95 103)(49 58 128 116)(50 111 121 65)(51 64 122 114)(52 109 123 71)(53 62 124 120)(54 107 125 69)(55 60 126 118)(56 105 127 67)
(1 104 55 24)(2 103 56 23)(3 102 49 22)(4 101 50 21)(5 100 51 20)(6 99 52 19)(7 98 53 18)(8 97 54 17)(9 44 126 77)(10 43 127 76)(11 42 128 75)(12 41 121 74)(13 48 122 73)(14 47 123 80)(15 46 124 79)(16 45 125 78)(25 72 90 64)(26 71 91 63)(27 70 92 62)(28 69 93 61)(29 68 94 60)(30 67 95 59)(31 66 96 58)(32 65 89 57)(33 116 88 112)(34 115 81 111)(35 114 82 110)(36 113 83 109)(37 120 84 108)(38 119 85 107)(39 118 86 106)(40 117 87 105)

G:=sub<Sym(128)| (1,126)(2,127)(3,128)(4,121)(5,122)(6,123)(7,124)(8,125)(9,55)(10,56)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34)(57,111)(58,112)(59,105)(60,106)(61,107)(62,108)(63,109)(64,110)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,113)(72,114)(73,100)(74,101)(75,102)(76,103)(77,104)(78,97)(79,98)(80,99)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,68,9,106)(2,117,10,59)(3,66,11,112)(4,115,12,57)(5,72,13,110)(6,113,14,63)(7,70,15,108)(8,119,16,61)(17,85,78,28)(18,92,79,37)(19,83,80,26)(20,90,73,35)(21,81,74,32)(22,96,75,33)(23,87,76,30)(24,94,77,39)(25,48,82,100)(27,46,84,98)(29,44,86,104)(31,42,88,102)(34,41,89,101)(36,47,91,99)(38,45,93,97)(40,43,95,103)(49,58,128,116)(50,111,121,65)(51,64,122,114)(52,109,123,71)(53,62,124,120)(54,107,125,69)(55,60,126,118)(56,105,127,67), (1,104,55,24)(2,103,56,23)(3,102,49,22)(4,101,50,21)(5,100,51,20)(6,99,52,19)(7,98,53,18)(8,97,54,17)(9,44,126,77)(10,43,127,76)(11,42,128,75)(12,41,121,74)(13,48,122,73)(14,47,123,80)(15,46,124,79)(16,45,125,78)(25,72,90,64)(26,71,91,63)(27,70,92,62)(28,69,93,61)(29,68,94,60)(30,67,95,59)(31,66,96,58)(32,65,89,57)(33,116,88,112)(34,115,81,111)(35,114,82,110)(36,113,83,109)(37,120,84,108)(38,119,85,107)(39,118,86,106)(40,117,87,105)>;

G:=Group( (1,126)(2,127)(3,128)(4,121)(5,122)(6,123)(7,124)(8,125)(9,55)(10,56)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34)(57,111)(58,112)(59,105)(60,106)(61,107)(62,108)(63,109)(64,110)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,113)(72,114)(73,100)(74,101)(75,102)(76,103)(77,104)(78,97)(79,98)(80,99)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,68,9,106)(2,117,10,59)(3,66,11,112)(4,115,12,57)(5,72,13,110)(6,113,14,63)(7,70,15,108)(8,119,16,61)(17,85,78,28)(18,92,79,37)(19,83,80,26)(20,90,73,35)(21,81,74,32)(22,96,75,33)(23,87,76,30)(24,94,77,39)(25,48,82,100)(27,46,84,98)(29,44,86,104)(31,42,88,102)(34,41,89,101)(36,47,91,99)(38,45,93,97)(40,43,95,103)(49,58,128,116)(50,111,121,65)(51,64,122,114)(52,109,123,71)(53,62,124,120)(54,107,125,69)(55,60,126,118)(56,105,127,67), (1,104,55,24)(2,103,56,23)(3,102,49,22)(4,101,50,21)(5,100,51,20)(6,99,52,19)(7,98,53,18)(8,97,54,17)(9,44,126,77)(10,43,127,76)(11,42,128,75)(12,41,121,74)(13,48,122,73)(14,47,123,80)(15,46,124,79)(16,45,125,78)(25,72,90,64)(26,71,91,63)(27,70,92,62)(28,69,93,61)(29,68,94,60)(30,67,95,59)(31,66,96,58)(32,65,89,57)(33,116,88,112)(34,115,81,111)(35,114,82,110)(36,113,83,109)(37,120,84,108)(38,119,85,107)(39,118,86,106)(40,117,87,105) );

G=PermutationGroup([[(1,126),(2,127),(3,128),(4,121),(5,122),(6,123),(7,124),(8,125),(9,55),(10,56),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,45),(18,46),(19,47),(20,48),(21,41),(22,42),(23,43),(24,44),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(31,33),(32,34),(57,111),(58,112),(59,105),(60,106),(61,107),(62,108),(63,109),(64,110),(65,115),(66,116),(67,117),(68,118),(69,119),(70,120),(71,113),(72,114),(73,100),(74,101),(75,102),(76,103),(77,104),(78,97),(79,98),(80,99),(81,89),(82,90),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,68,9,106),(2,117,10,59),(3,66,11,112),(4,115,12,57),(5,72,13,110),(6,113,14,63),(7,70,15,108),(8,119,16,61),(17,85,78,28),(18,92,79,37),(19,83,80,26),(20,90,73,35),(21,81,74,32),(22,96,75,33),(23,87,76,30),(24,94,77,39),(25,48,82,100),(27,46,84,98),(29,44,86,104),(31,42,88,102),(34,41,89,101),(36,47,91,99),(38,45,93,97),(40,43,95,103),(49,58,128,116),(50,111,121,65),(51,64,122,114),(52,109,123,71),(53,62,124,120),(54,107,125,69),(55,60,126,118),(56,105,127,67)], [(1,104,55,24),(2,103,56,23),(3,102,49,22),(4,101,50,21),(5,100,51,20),(6,99,52,19),(7,98,53,18),(8,97,54,17),(9,44,126,77),(10,43,127,76),(11,42,128,75),(12,41,121,74),(13,48,122,73),(14,47,123,80),(15,46,124,79),(16,45,125,78),(25,72,90,64),(26,71,91,63),(27,70,92,62),(28,69,93,61),(29,68,94,60),(30,67,95,59),(31,66,96,58),(32,65,89,57),(33,116,88,112),(34,115,81,111),(35,114,82,110),(36,113,83,109),(37,120,84,108),(38,119,85,107),(39,118,86,106),(40,117,87,105)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim11111122222244
type+++++++-++-+-
imageC1C2C2C2C2C2D4Q8D4D8Q16C4○D4C8⋊C22C8.C22
kernel(C2×C8).1Q8C22.7C42C22.4Q16C429C4C23.65C23C2×C2.D8C4⋊C4C2×C8C22×C4C2×C4C2×C4C2×C4C22C22
# reps11211224244611

Matrix representation of (C2×C8).1Q8 in GL6(𝔽17)

1600000
0160000
001000
000100
0000160
0000016
,
1090000
670000
0015000
000800
000004
000040
,
6120000
7110000
0001500
009000
000040
000004
,
620000
7110000
000900
0015000
0000160
000001

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[10,6,0,0,0,0,9,7,0,0,0,0,0,0,15,0,0,0,0,0,0,8,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[6,7,0,0,0,0,12,11,0,0,0,0,0,0,0,9,0,0,0,0,15,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[6,7,0,0,0,0,2,11,0,0,0,0,0,0,0,15,0,0,0,0,9,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1] >;

(C2×C8).1Q8 in GAP, Magma, Sage, TeX

(C_2\times C_8)._1Q_8
% in TeX

G:=Group("(C2xC8).1Q8");
// GroupNames label

G:=SmallGroup(128,815);
// by ID

G=gap.SmallGroup(128,815);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,64,422,387,58,2028,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=a*c^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a*b^-1,d*b*d^-1=b^-1,d*c*d^-1=a*c^-1>;
// generators/relations

׿
×
𝔽