Copied to
clipboard

G = C2.(C4×Q16)  order 128 = 27

6th central stem extension by C2 of C4×Q16

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4.69(C4×D4), C2.9(C4×Q16), C4⋊C4.214D4, Q8⋊C45C4, (C2×C4).49Q16, C2.3(C42Q16), (C22×C4).698D4, C23.783(C2×D4), C22.165(C4×D4), C22.35(C2×Q16), C2.5(D4.2D4), C4.27(C4.4D4), C22.68(C4○D8), (C22×C8).51C22, C4.32(C422C2), C4.39(C42⋊C2), C22.86(C8⋊C22), C22.4Q16.12C2, (C2×C42).299C22, C2.15(SD16⋊C4), (C22×Q8).28C22, C22.127(C4⋊D4), (C22×C4).1382C23, C2.7(C23.20D4), C2.5(C23.48D4), C22.75(C8.C22), C23.67C23.7C2, C22.7C42.22C2, C2.13(C24.C22), C22.95(C22.D4), (C4×C4⋊C4).19C2, (C2×C8).42(C2×C4), (C2×C2.D8).7C2, C4⋊C4.152(C2×C4), (C2×Q8).80(C2×C4), (C2×C4).1012(C2×D4), (C2×Q8⋊C4).5C2, (C2×C4).578(C4○D4), (C2×C4⋊C4).776C22, (C2×C4).400(C22×C4), SmallGroup(128,660)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2.(C4×Q16)
C1C2C22C2×C4C22×C4C2×C4⋊C4C4×C4⋊C4 — C2.(C4×Q16)
C1C2C2×C4 — C2.(C4×Q16)
C1C23C2×C42 — C2.(C4×Q16)
C1C2C2C22×C4 — C2.(C4×Q16)

Generators and relations for C2.(C4×Q16)
 G = < a,b,c,d | a2=b4=c8=1, d2=c4, cbc-1=dbd-1=ab=ba, ac=ca, ad=da, dcd-1=ac-1 >

Subgroups: 244 in 127 conjugacy classes, 58 normal (44 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, Q8⋊C4, Q8⋊C4, C2.D8, C2×C42, C2×C42, C2×C4⋊C4, C22×C8, C22×Q8, C22.7C42, C22.4Q16, C4×C4⋊C4, C23.67C23, C2×Q8⋊C4, C2×C2.D8, C2.(C4×Q16)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, Q16, C22×C4, C2×D4, C4○D4, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C4.4D4, C422C2, C2×Q16, C4○D8, C8⋊C22, C8.C22, C24.C22, C4×Q16, SD16⋊C4, C42Q16, D4.2D4, C23.48D4, C23.20D4, C2.(C4×Q16)

Smallest permutation representation of C2.(C4×Q16)
Regular action on 128 points
Generators in S128
(1 128)(2 121)(3 122)(4 123)(5 124)(6 125)(7 126)(8 127)(9 107)(10 108)(11 109)(12 110)(13 111)(14 112)(15 105)(16 106)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 47)(34 48)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)(49 61)(50 62)(51 63)(52 64)(53 57)(54 58)(55 59)(56 60)(65 117)(66 118)(67 119)(68 120)(69 113)(70 114)(71 115)(72 116)(73 83)(74 84)(75 85)(76 86)(77 87)(78 88)(79 81)(80 82)(89 100)(90 101)(91 102)(92 103)(93 104)(94 97)(95 98)(96 99)
(1 31 113 79)(2 20 114 82)(3 25 115 73)(4 22 116 84)(5 27 117 75)(6 24 118 86)(7 29 119 77)(8 18 120 88)(9 98 51 43)(10 96 52 38)(11 100 53 45)(12 90 54 40)(13 102 55 47)(14 92 56 34)(15 104 49 41)(16 94 50 36)(17 67 87 126)(19 69 81 128)(21 71 83 122)(23 65 85 124)(26 72 74 123)(28 66 76 125)(30 68 78 127)(32 70 80 121)(33 111 91 59)(35 105 93 61)(37 107 95 63)(39 109 89 57)(42 106 97 62)(44 108 99 64)(46 110 101 58)(48 112 103 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 62 5 58)(2 49 6 53)(3 60 7 64)(4 55 8 51)(9 116 13 120)(10 71 14 67)(11 114 15 118)(12 69 16 65)(17 44 21 48)(18 37 22 33)(19 42 23 46)(20 35 24 39)(25 34 29 38)(26 47 30 43)(27 40 31 36)(28 45 32 41)(50 124 54 128)(52 122 56 126)(57 121 61 125)(59 127 63 123)(66 109 70 105)(68 107 72 111)(73 92 77 96)(74 102 78 98)(75 90 79 94)(76 100 80 104)(81 97 85 101)(82 93 86 89)(83 103 87 99)(84 91 88 95)(106 117 110 113)(108 115 112 119)

G:=sub<Sym(128)| (1,128)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,127)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,105)(16,106)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(65,117)(66,118)(67,119)(68,120)(69,113)(70,114)(71,115)(72,116)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,81)(80,82)(89,100)(90,101)(91,102)(92,103)(93,104)(94,97)(95,98)(96,99), (1,31,113,79)(2,20,114,82)(3,25,115,73)(4,22,116,84)(5,27,117,75)(6,24,118,86)(7,29,119,77)(8,18,120,88)(9,98,51,43)(10,96,52,38)(11,100,53,45)(12,90,54,40)(13,102,55,47)(14,92,56,34)(15,104,49,41)(16,94,50,36)(17,67,87,126)(19,69,81,128)(21,71,83,122)(23,65,85,124)(26,72,74,123)(28,66,76,125)(30,68,78,127)(32,70,80,121)(33,111,91,59)(35,105,93,61)(37,107,95,63)(39,109,89,57)(42,106,97,62)(44,108,99,64)(46,110,101,58)(48,112,103,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,62,5,58)(2,49,6,53)(3,60,7,64)(4,55,8,51)(9,116,13,120)(10,71,14,67)(11,114,15,118)(12,69,16,65)(17,44,21,48)(18,37,22,33)(19,42,23,46)(20,35,24,39)(25,34,29,38)(26,47,30,43)(27,40,31,36)(28,45,32,41)(50,124,54,128)(52,122,56,126)(57,121,61,125)(59,127,63,123)(66,109,70,105)(68,107,72,111)(73,92,77,96)(74,102,78,98)(75,90,79,94)(76,100,80,104)(81,97,85,101)(82,93,86,89)(83,103,87,99)(84,91,88,95)(106,117,110,113)(108,115,112,119)>;

G:=Group( (1,128)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,127)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,105)(16,106)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(65,117)(66,118)(67,119)(68,120)(69,113)(70,114)(71,115)(72,116)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,81)(80,82)(89,100)(90,101)(91,102)(92,103)(93,104)(94,97)(95,98)(96,99), (1,31,113,79)(2,20,114,82)(3,25,115,73)(4,22,116,84)(5,27,117,75)(6,24,118,86)(7,29,119,77)(8,18,120,88)(9,98,51,43)(10,96,52,38)(11,100,53,45)(12,90,54,40)(13,102,55,47)(14,92,56,34)(15,104,49,41)(16,94,50,36)(17,67,87,126)(19,69,81,128)(21,71,83,122)(23,65,85,124)(26,72,74,123)(28,66,76,125)(30,68,78,127)(32,70,80,121)(33,111,91,59)(35,105,93,61)(37,107,95,63)(39,109,89,57)(42,106,97,62)(44,108,99,64)(46,110,101,58)(48,112,103,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,62,5,58)(2,49,6,53)(3,60,7,64)(4,55,8,51)(9,116,13,120)(10,71,14,67)(11,114,15,118)(12,69,16,65)(17,44,21,48)(18,37,22,33)(19,42,23,46)(20,35,24,39)(25,34,29,38)(26,47,30,43)(27,40,31,36)(28,45,32,41)(50,124,54,128)(52,122,56,126)(57,121,61,125)(59,127,63,123)(66,109,70,105)(68,107,72,111)(73,92,77,96)(74,102,78,98)(75,90,79,94)(76,100,80,104)(81,97,85,101)(82,93,86,89)(83,103,87,99)(84,91,88,95)(106,117,110,113)(108,115,112,119) );

G=PermutationGroup([[(1,128),(2,121),(3,122),(4,123),(5,124),(6,125),(7,126),(8,127),(9,107),(10,108),(11,109),(12,110),(13,111),(14,112),(15,105),(16,106),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,47),(34,48),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46),(49,61),(50,62),(51,63),(52,64),(53,57),(54,58),(55,59),(56,60),(65,117),(66,118),(67,119),(68,120),(69,113),(70,114),(71,115),(72,116),(73,83),(74,84),(75,85),(76,86),(77,87),(78,88),(79,81),(80,82),(89,100),(90,101),(91,102),(92,103),(93,104),(94,97),(95,98),(96,99)], [(1,31,113,79),(2,20,114,82),(3,25,115,73),(4,22,116,84),(5,27,117,75),(6,24,118,86),(7,29,119,77),(8,18,120,88),(9,98,51,43),(10,96,52,38),(11,100,53,45),(12,90,54,40),(13,102,55,47),(14,92,56,34),(15,104,49,41),(16,94,50,36),(17,67,87,126),(19,69,81,128),(21,71,83,122),(23,65,85,124),(26,72,74,123),(28,66,76,125),(30,68,78,127),(32,70,80,121),(33,111,91,59),(35,105,93,61),(37,107,95,63),(39,109,89,57),(42,106,97,62),(44,108,99,64),(46,110,101,58),(48,112,103,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,62,5,58),(2,49,6,53),(3,60,7,64),(4,55,8,51),(9,116,13,120),(10,71,14,67),(11,114,15,118),(12,69,16,65),(17,44,21,48),(18,37,22,33),(19,42,23,46),(20,35,24,39),(25,34,29,38),(26,47,30,43),(27,40,31,36),(28,45,32,41),(50,124,54,128),(52,122,56,126),(57,121,61,125),(59,127,63,123),(66,109,70,105),(68,107,72,111),(73,92,77,96),(74,102,78,98),(75,90,79,94),(76,100,80,104),(81,97,85,101),(82,93,86,89),(83,103,87,99),(84,91,88,95),(106,117,110,113),(108,115,112,119)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4R4S4T4U4V8A···8H
order12···24···44···444448···8
size11···12···24···488884···4

38 irreducible representations

dim111111112222244
type+++++++++-+-
imageC1C2C2C2C2C2C2C4D4D4Q16C4○D4C4○D8C8⋊C22C8.C22
kernelC2.(C4×Q16)C22.7C42C22.4Q16C4×C4⋊C4C23.67C23C2×Q8⋊C4C2×C2.D8Q8⋊C4C4⋊C4C22×C4C2×C4C2×C4C22C22C22
# reps111112182248411

Matrix representation of C2.(C4×Q16) in GL6(𝔽17)

100000
010000
0016000
0001600
000010
000001
,
1300000
0130000
0013800
0013400
0000160
0000016
,
0110000
300000
0011500
0001600
0000611
000030
,
1170000
1260000
0016000
0016100
000040
0000413

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,13,0,0,0,0,8,4,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,3,0,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,15,16,0,0,0,0,0,0,6,3,0,0,0,0,11,0],[11,12,0,0,0,0,7,6,0,0,0,0,0,0,16,16,0,0,0,0,0,1,0,0,0,0,0,0,4,4,0,0,0,0,0,13] >;

C2.(C4×Q16) in GAP, Magma, Sage, TeX

C_2.(C_4\times Q_{16})
% in TeX

G:=Group("C2.(C4xQ16)");
// GroupNames label

G:=SmallGroup(128,660);
// by ID

G=gap.SmallGroup(128,660);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,736,422,394,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=c^4,c*b*c^-1=d*b*d^-1=a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=a*c^-1>;
// generators/relations

׿
×
𝔽