direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C4⋊M4(2), C42.673C23, C4⋊C8⋊79C22, C4⋊3(C2×M4(2)), (C2×C4)⋊11M4(2), (C2×C42).54C4, (C23×C4).40C4, (C22×C4).99Q8, C4.58(C22×Q8), C23.73(C4⋊C4), C4○(C4⋊M4(2)), C42.333(C2×C4), (C2×C8).393C23, (C2×C4).632C24, C24.127(C2×C4), C4.184(C22×D4), (C22×C4).602D4, (C22×C42).31C2, C2.7(C22×M4(2)), C23.222(C22×C4), C22.161(C23×C4), (C23×C4).692C22, (C22×C8).426C22, C22.61(C2×M4(2)), (C22×C4).1500C23, (C2×C42).1103C22, (C22×M4(2)).27C2, (C2×M4(2)).335C22, (C2×C4⋊C8)⋊41C2, C4.60(C2×C4⋊C4), C2.18(C22×C4⋊C4), C22.32(C2×C4⋊C4), (C2×C4).356(C2×Q8), (C2×C4).147(C4⋊C4), (C2×C4).1566(C2×D4), (C2×C4)○(C4⋊M4(2)), (C22×C4).457(C2×C4), (C2×C4).570(C22×C4), SmallGroup(128,1635)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C4⋊M4(2)
G = < a,b,c,d | a2=b4=c8=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd=c5 >
Subgroups: 380 in 288 conjugacy classes, 196 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C4⋊C8, C2×C42, C2×C42, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C23×C4, C2×C4⋊C8, C4⋊M4(2), C22×C42, C22×M4(2), C2×C4⋊M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, M4(2), C22×C4, C2×D4, C2×Q8, C24, C2×C4⋊C4, C2×M4(2), C23×C4, C22×D4, C22×Q8, C4⋊M4(2), C22×C4⋊C4, C22×M4(2), C2×C4⋊M4(2)
(1 55)(2 56)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 57)(40 58)
(1 61 23 13)(2 14 24 62)(3 63 17 15)(4 16 18 64)(5 57 19 9)(6 10 20 58)(7 59 21 11)(8 12 22 60)(25 46 53 33)(26 34 54 47)(27 48 55 35)(28 36 56 41)(29 42 49 37)(30 38 50 43)(31 44 51 39)(32 40 52 45)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(26 30)(28 32)(34 38)(36 40)(41 45)(43 47)(50 54)(52 56)(58 62)(60 64)
G:=sub<Sym(64)| (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,61,23,13)(2,14,24,62)(3,63,17,15)(4,16,18,64)(5,57,19,9)(6,10,20,58)(7,59,21,11)(8,12,22,60)(25,46,53,33)(26,34,54,47)(27,48,55,35)(28,36,56,41)(29,42,49,37)(30,38,50,43)(31,44,51,39)(32,40,52,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)>;
G:=Group( (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,61,23,13)(2,14,24,62)(3,63,17,15)(4,16,18,64)(5,57,19,9)(6,10,20,58)(7,59,21,11)(8,12,22,60)(25,46,53,33)(26,34,54,47)(27,48,55,35)(28,36,56,41)(29,42,49,37)(30,38,50,43)(31,44,51,39)(32,40,52,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64) );
G=PermutationGroup([[(1,55),(2,56),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,57),(40,58)], [(1,61,23,13),(2,14,24,62),(3,63,17,15),(4,16,18,64),(5,57,19,9),(6,10,20,58),(7,59,21,11),(8,12,22,60),(25,46,53,33),(26,34,54,47),(27,48,55,35),(28,36,56,41),(29,42,49,37),(30,38,50,43),(31,44,51,39),(32,40,52,45)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(26,30),(28,32),(34,38),(36,40),(41,45),(43,47),(50,54),(52,56),(58,62),(60,64)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4AB | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | Q8 | M4(2) |
kernel | C2×C4⋊M4(2) | C2×C4⋊C8 | C4⋊M4(2) | C22×C42 | C22×M4(2) | C2×C42 | C23×C4 | C22×C4 | C22×C4 | C2×C4 |
# reps | 1 | 4 | 8 | 1 | 2 | 12 | 4 | 4 | 4 | 16 |
Matrix representation of C2×C4⋊M4(2) ►in GL5(𝔽17)
16 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 15 | 0 | 0 |
0 | 1 | 16 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 13 |
1 | 0 | 0 | 0 | 0 |
0 | 16 | 2 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 4 | 0 |
16 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 16 |
G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,1,1,0,0,0,15,16,0,0,0,0,0,4,0,0,0,0,0,13],[1,0,0,0,0,0,16,0,0,0,0,2,1,0,0,0,0,0,0,4,0,0,0,1,0],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16] >;
C2×C4⋊M4(2) in GAP, Magma, Sage, TeX
C_2\times C_4\rtimes M_4(2)
% in TeX
G:=Group("C2xC4:M4(2)");
// GroupNames label
G:=SmallGroup(128,1635);
// by ID
G=gap.SmallGroup(128,1635);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,1430,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d=c^5>;
// generators/relations