direct product, abelian, monomial, 2-elementary
Aliases: C2×C72, SmallGroup(144,23)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C72 |
C1 — C2×C72 |
C1 — C2×C72 |
Generators and relations for C2×C72
G = < a,b | a2=b72=1, ab=ba >
(1 88)(2 89)(3 90)(4 91)(5 92)(6 93)(7 94)(8 95)(9 96)(10 97)(11 98)(12 99)(13 100)(14 101)(15 102)(16 103)(17 104)(18 105)(19 106)(20 107)(21 108)(22 109)(23 110)(24 111)(25 112)(26 113)(27 114)(28 115)(29 116)(30 117)(31 118)(32 119)(33 120)(34 121)(35 122)(36 123)(37 124)(38 125)(39 126)(40 127)(41 128)(42 129)(43 130)(44 131)(45 132)(46 133)(47 134)(48 135)(49 136)(50 137)(51 138)(52 139)(53 140)(54 141)(55 142)(56 143)(57 144)(58 73)(59 74)(60 75)(61 76)(62 77)(63 78)(64 79)(65 80)(66 81)(67 82)(68 83)(69 84)(70 85)(71 86)(72 87)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
G:=sub<Sym(144)| (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,138)(52,139)(53,140)(54,141)(55,142)(56,143)(57,144)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;
G:=Group( (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,113)(27,114)(28,115)(29,116)(30,117)(31,118)(32,119)(33,120)(34,121)(35,122)(36,123)(37,124)(38,125)(39,126)(40,127)(41,128)(42,129)(43,130)(44,131)(45,132)(46,133)(47,134)(48,135)(49,136)(50,137)(51,138)(52,139)(53,140)(54,141)(55,142)(56,143)(57,144)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );
G=PermutationGroup([[(1,88),(2,89),(3,90),(4,91),(5,92),(6,93),(7,94),(8,95),(9,96),(10,97),(11,98),(12,99),(13,100),(14,101),(15,102),(16,103),(17,104),(18,105),(19,106),(20,107),(21,108),(22,109),(23,110),(24,111),(25,112),(26,113),(27,114),(28,115),(29,116),(30,117),(31,118),(32,119),(33,120),(34,121),(35,122),(36,123),(37,124),(38,125),(39,126),(40,127),(41,128),(42,129),(43,130),(44,131),(45,132),(46,133),(47,134),(48,135),(49,136),(50,137),(51,138),(52,139),(53,140),(54,141),(55,142),(56,143),(57,144),(58,73),(59,74),(60,75),(61,76),(62,77),(63,78),(64,79),(65,80),(66,81),(67,82),(68,83),(69,84),(70,85),(71,86),(72,87)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])
C2×C72 is a maximal subgroup of
C36.C8 C72.C4 Dic9⋊C8 C72⋊C4 C36.45D4 C8⋊Dic9 C72⋊1C4 D18⋊C8 C2.D72 D36.2C4 D72⋊7C2
144 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | ··· | 6F | 8A | ··· | 8H | 9A | ··· | 9F | 12A | ··· | 12H | 18A | ··· | 18R | 24A | ··· | 24P | 36A | ··· | 36X | 72A | ··· | 72AV |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 9 | ··· | 9 | 12 | ··· | 12 | 18 | ··· | 18 | 24 | ··· | 24 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
144 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C8 | C9 | C12 | C12 | C18 | C18 | C24 | C36 | C36 | C72 |
kernel | C2×C72 | C72 | C2×C36 | C2×C24 | C36 | C2×C18 | C24 | C2×C12 | C18 | C2×C8 | C12 | C2×C6 | C8 | C2×C4 | C6 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 8 | 6 | 4 | 4 | 12 | 6 | 16 | 12 | 12 | 48 |
Matrix representation of C2×C72 ►in GL2(𝔽73) generated by
72 | 0 |
0 | 1 |
10 | 0 |
0 | 14 |
G:=sub<GL(2,GF(73))| [72,0,0,1],[10,0,0,14] >;
C2×C72 in GAP, Magma, Sage, TeX
C_2\times C_{72}
% in TeX
G:=Group("C2xC72");
// GroupNames label
G:=SmallGroup(144,23);
// by ID
G=gap.SmallGroup(144,23);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-2,72,122,165]);
// Polycyclic
G:=Group<a,b|a^2=b^72=1,a*b=b*a>;
// generators/relations
Export