Copied to
clipboard

G = D132order 264 = 23·3·11

Dihedral group

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: D132, C4⋊D33, C31D44, C334D4, C441S3, C111D12, C1321C2, D661C2, C121D11, C2.4D66, C22.10D6, C6.10D22, C66.10C22, sometimes denoted D264 or Dih132 or Dih264, SmallGroup(264,25)

Series: Derived Chief Lower central Upper central

C1C66 — D132
C1C11C33C66D66 — D132
C33C66 — D132
C1C2C4

Generators and relations for D132
 G = < a,b | a132=b2=1, bab=a-1 >

66C2
66C2
33C22
33C22
22S3
22S3
6D11
6D11
33D4
11D6
11D6
3D22
3D22
2D33
2D33
11D12
3D44

Smallest permutation representation of D132
On 132 points
Generators in S132
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)
(1 132)(2 131)(3 130)(4 129)(5 128)(6 127)(7 126)(8 125)(9 124)(10 123)(11 122)(12 121)(13 120)(14 119)(15 118)(16 117)(17 116)(18 115)(19 114)(20 113)(21 112)(22 111)(23 110)(24 109)(25 108)(26 107)(27 106)(28 105)(29 104)(30 103)(31 102)(32 101)(33 100)(34 99)(35 98)(36 97)(37 96)(38 95)(39 94)(40 93)(41 92)(42 91)(43 90)(44 89)(45 88)(46 87)(47 86)(48 85)(49 84)(50 83)(51 82)(52 81)(53 80)(54 79)(55 78)(56 77)(57 76)(58 75)(59 74)(60 73)(61 72)(62 71)(63 70)(64 69)(65 68)(66 67)

G:=sub<Sym(132)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,132)(2,131)(3,130)(4,129)(5,128)(6,127)(7,126)(8,125)(9,124)(10,123)(11,122)(12,121)(13,120)(14,119)(15,118)(16,117)(17,116)(18,115)(19,114)(20,113)(21,112)(22,111)(23,110)(24,109)(25,108)(26,107)(27,106)(28,105)(29,104)(30,103)(31,102)(32,101)(33,100)(34,99)(35,98)(36,97)(37,96)(38,95)(39,94)(40,93)(41,92)(42,91)(43,90)(44,89)(45,88)(46,87)(47,86)(48,85)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73)(61,72)(62,71)(63,70)(64,69)(65,68)(66,67)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,132)(2,131)(3,130)(4,129)(5,128)(6,127)(7,126)(8,125)(9,124)(10,123)(11,122)(12,121)(13,120)(14,119)(15,118)(16,117)(17,116)(18,115)(19,114)(20,113)(21,112)(22,111)(23,110)(24,109)(25,108)(26,107)(27,106)(28,105)(29,104)(30,103)(31,102)(32,101)(33,100)(34,99)(35,98)(36,97)(37,96)(38,95)(39,94)(40,93)(41,92)(42,91)(43,90)(44,89)(45,88)(46,87)(47,86)(48,85)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73)(61,72)(62,71)(63,70)(64,69)(65,68)(66,67) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)], [(1,132),(2,131),(3,130),(4,129),(5,128),(6,127),(7,126),(8,125),(9,124),(10,123),(11,122),(12,121),(13,120),(14,119),(15,118),(16,117),(17,116),(18,115),(19,114),(20,113),(21,112),(22,111),(23,110),(24,109),(25,108),(26,107),(27,106),(28,105),(29,104),(30,103),(31,102),(32,101),(33,100),(34,99),(35,98),(36,97),(37,96),(38,95),(39,94),(40,93),(41,92),(42,91),(43,90),(44,89),(45,88),(46,87),(47,86),(48,85),(49,84),(50,83),(51,82),(52,81),(53,80),(54,79),(55,78),(56,77),(57,76),(58,75),(59,74),(60,73),(61,72),(62,71),(63,70),(64,69),(65,68),(66,67)]])

69 conjugacy classes

class 1 2A2B2C 3  4  6 11A···11E12A12B22A···22E33A···33J44A···44J66A···66J132A···132T
order122234611···11121222···2233···3344···4466···66132···132
size1166662222···2222···22···22···22···22···2

69 irreducible representations

dim1112222222222
type+++++++++++++
imageC1C2C2S3D4D6D11D12D22D33D44D66D132
kernelD132C132D66C44C33C22C12C11C6C4C3C2C1
# reps11211152510101020

Matrix representation of D132 in GL2(𝔽397) generated by

266123
276153
,
182103
60215
G:=sub<GL(2,GF(397))| [266,276,123,153],[182,60,103,215] >;

D132 in GAP, Magma, Sage, TeX

D_{132}
% in TeX

G:=Group("D132");
// GroupNames label

G:=SmallGroup(264,25);
// by ID

G=gap.SmallGroup(264,25);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-11,61,26,323,6004]);
// Polycyclic

G:=Group<a,b|a^132=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D132 in TeX

׿
×
𝔽