Copied to
clipboard

G = S3×D25order 300 = 22·3·52

Direct product of S3 and D25

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×D25, D75⋊C2, C31D50, C251D6, C75⋊C22, C15.D10, C5.(S3×D5), (S3×C25)⋊C2, (C3×D25)⋊C2, (C5×S3).D5, SmallGroup(300,7)

Series: Derived Chief Lower central Upper central

C1C75 — S3×D25
C1C5C25C75C3×D25 — S3×D25
C75 — S3×D25
C1

Generators and relations for S3×D25
 G = < a,b,c,d | a3=b2=c25=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

3C2
25C2
75C2
75C22
25C6
25S3
3C10
5D5
15D5
25D6
15D10
5C3×D5
5D15
3C50
3D25
5S3×D5
3D50

Smallest permutation representation of S3×D25
On 75 points
Generators in S75
(1 46 70)(2 47 71)(3 48 72)(4 49 73)(5 50 74)(6 26 75)(7 27 51)(8 28 52)(9 29 53)(10 30 54)(11 31 55)(12 32 56)(13 33 57)(14 34 58)(15 35 59)(16 36 60)(17 37 61)(18 38 62)(19 39 63)(20 40 64)(21 41 65)(22 42 66)(23 43 67)(24 44 68)(25 45 69)
(26 75)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 57)(34 58)(35 59)(36 60)(37 61)(38 62)(39 63)(40 64)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 71)(48 72)(49 73)(50 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(26 40)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)(41 50)(42 49)(43 48)(44 47)(45 46)(51 63)(52 62)(53 61)(54 60)(55 59)(56 58)(64 75)(65 74)(66 73)(67 72)(68 71)(69 70)

G:=sub<Sym(75)| (1,46,70)(2,47,71)(3,48,72)(4,49,73)(5,50,74)(6,26,75)(7,27,51)(8,28,52)(9,29,53)(10,30,54)(11,31,55)(12,32,56)(13,33,57)(14,34,58)(15,35,59)(16,36,60)(17,37,61)(18,38,62)(19,39,63)(20,40,64)(21,41,65)(22,42,66)(23,43,67)(24,44,68)(25,45,69), (26,75)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,73)(50,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(41,50)(42,49)(43,48)(44,47)(45,46)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)>;

G:=Group( (1,46,70)(2,47,71)(3,48,72)(4,49,73)(5,50,74)(6,26,75)(7,27,51)(8,28,52)(9,29,53)(10,30,54)(11,31,55)(12,32,56)(13,33,57)(14,34,58)(15,35,59)(16,36,60)(17,37,61)(18,38,62)(19,39,63)(20,40,64)(21,41,65)(22,42,66)(23,43,67)(24,44,68)(25,45,69), (26,75)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,73)(50,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(41,50)(42,49)(43,48)(44,47)(45,46)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70) );

G=PermutationGroup([[(1,46,70),(2,47,71),(3,48,72),(4,49,73),(5,50,74),(6,26,75),(7,27,51),(8,28,52),(9,29,53),(10,30,54),(11,31,55),(12,32,56),(13,33,57),(14,34,58),(15,35,59),(16,36,60),(17,37,61),(18,38,62),(19,39,63),(20,40,64),(21,41,65),(22,42,66),(23,43,67),(24,44,68),(25,45,69)], [(26,75),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,57),(34,58),(35,59),(36,60),(37,61),(38,62),(39,63),(40,64),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,71),(48,72),(49,73),(50,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(26,40),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34),(41,50),(42,49),(43,48),(44,47),(45,46),(51,63),(52,62),(53,61),(54,60),(55,59),(56,58),(64,75),(65,74),(66,73),(67,72),(68,71),(69,70)]])

42 conjugacy classes

class 1 2A2B2C 3 5A5B 6 10A10B15A15B25A···25J50A···50J75A···75J
order122235561010151525···2550···5075···75
size1325752225066442···26···64···4

42 irreducible representations

dim111122222244
type++++++++++++
imageC1C2C2C2S3D5D6D10D25D50S3×D5S3×D25
kernelS3×D25S3×C25C3×D25D75D25C5×S3C25C15S3C3C5C1
# reps111112121010210

Matrix representation of S3×D25 in GL4(𝔽151) generated by

1000
0100
001121
00136149
,
1000
0100
0015030
0001
,
8813600
1337000
0010
0001
,
1364000
851500
0010
0001
G:=sub<GL(4,GF(151))| [1,0,0,0,0,1,0,0,0,0,1,136,0,0,121,149],[1,0,0,0,0,1,0,0,0,0,150,0,0,0,30,1],[88,133,0,0,136,70,0,0,0,0,1,0,0,0,0,1],[136,85,0,0,40,15,0,0,0,0,1,0,0,0,0,1] >;

S3×D25 in GAP, Magma, Sage, TeX

S_3\times D_{25}
% in TeX

G:=Group("S3xD25");
// GroupNames label

G:=SmallGroup(300,7);
// by ID

G=gap.SmallGroup(300,7);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-5,67,2163,418,6004]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^25=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3×D25 in TeX

׿
×
𝔽