| extension | φ:Q→Aut N | d | ρ | Label | ID | 
|---|
| C8⋊1(C4×S3) = C42.16D6 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 96 |  | C8:1(C4xS3) | 192,269 | 
| C8⋊2(C4×S3) = D24⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 96 |  | C8:2(C4xS3) | 192,270 | 
| C8⋊3(C4×S3) = C8⋊(C4×S3) | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 96 |  | C8:3(C4xS3) | 192,420 | 
| C8⋊4(C4×S3) = D24⋊9C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 96 |  | C8:4(C4xS3) | 192,428 | 
| C8⋊5(C4×S3) = C8⋊S3⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 96 |  | C8:5(C4xS3) | 192,440 | 
| C8⋊6(C4×S3) = C24⋊C2⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 96 |  | C8:6(C4xS3) | 192,448 | 
| C8⋊7(C4×S3) = Dic3⋊5D8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C8 | 96 |  | C8:7(C4xS3) | 192,431 | 
| C8⋊8(C4×S3) = Dic3⋊8SD16 | φ: C4×S3/Dic3 → C2 ⊆ Aut C8 | 96 |  | C8:8(C4xS3) | 192,411 | 
| C8⋊9(C4×S3) = Dic3⋊5M4(2) | φ: C4×S3/Dic3 → C2 ⊆ Aut C8 | 96 |  | C8:9(C4xS3) | 192,266 | 
| C8⋊10(C4×S3) = C4×D24 | φ: C4×S3/C12 → C2 ⊆ Aut C8 | 96 |  | C8:10(C4xS3) | 192,251 | 
| C8⋊11(C4×S3) = C4×C24⋊C2 | φ: C4×S3/C12 → C2 ⊆ Aut C8 | 96 |  | C8:11(C4xS3) | 192,250 | 
| C8⋊12(C4×S3) = C4×C8⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C8 | 96 |  | C8:12(C4xS3) | 192,246 | 
| C8⋊13(C4×S3) = S3×C2.D8 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 96 |  | C8:13(C4xS3) | 192,438 | 
| C8⋊14(C4×S3) = S3×C4.Q8 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 96 |  | C8:14(C4xS3) | 192,418 | 
| C8⋊15(C4×S3) = S3×C8⋊C4 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 96 |  | C8:15(C4xS3) | 192,263 | 
| extension | φ:Q→Aut N | d | ρ | Label | ID | 
|---|
| C8.1(C4×S3) = D24⋊8C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.1(C4xS3) | 192,47 | 
| C8.2(C4×S3) = D24.C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 48 | 4+ | C8.2(C4xS3) | 192,54 | 
| C8.3(C4×S3) = C24.8D4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 96 | 4- | C8.3(C4xS3) | 192,55 | 
| C8.4(C4×S3) = M5(2)⋊S3 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 48 | 4+ | C8.4(C4xS3) | 192,75 | 
| C8.5(C4×S3) = C12.4D8 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 96 | 4- | C8.5(C4xS3) | 192,76 | 
| C8.6(C4×S3) = D24⋊2C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.6(C4xS3) | 192,77 | 
| C8.7(C4×S3) = Dic12⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 192 |  | C8.7(C4xS3) | 192,275 | 
| C8.8(C4×S3) = D24⋊4C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.8(C4xS3) | 192,276 | 
| C8.9(C4×S3) = Dic12⋊9C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 192 |  | C8.9(C4xS3) | 192,412 | 
| C8.10(C4×S3) = M4(2).25D6 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.10(C4xS3) | 192,452 | 
| C8.11(C4×S3) = D24⋊10C4 | φ: C4×S3/C6 → C22 ⊆ Aut C8 | 48 | 4 | C8.11(C4xS3) | 192,453 | 
| C8.12(C4×S3) = C6.D16 | φ: C4×S3/Dic3 → C2 ⊆ Aut C8 | 96 |  | C8.12(C4xS3) | 192,50 | 
| C8.13(C4×S3) = C6.Q32 | φ: C4×S3/Dic3 → C2 ⊆ Aut C8 | 192 |  | C8.13(C4xS3) | 192,51 | 
| C8.14(C4×S3) = Dic12.C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C8 | 96 | 4 | C8.14(C4xS3) | 192,56 | 
| C8.15(C4×S3) = Dic3⋊5Q16 | φ: C4×S3/Dic3 → C2 ⊆ Aut C8 | 192 |  | C8.15(C4xS3) | 192,432 | 
| C8.16(C4×S3) = D24⋊7C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C8 | 48 | 4 | C8.16(C4xS3) | 192,454 | 
| C8.17(C4×S3) = C16.12D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C8 | 96 | 4 | C8.17(C4xS3) | 192,466 | 
| C8.18(C4×S3) = C2.Dic24 | φ: C4×S3/C12 → C2 ⊆ Aut C8 | 192 |  | C8.18(C4xS3) | 192,62 | 
| C8.19(C4×S3) = C2.D48 | φ: C4×S3/C12 → C2 ⊆ Aut C8 | 96 |  | C8.19(C4xS3) | 192,68 | 
| C8.20(C4×S3) = D24.1C4 | φ: C4×S3/C12 → C2 ⊆ Aut C8 | 96 | 2 | C8.20(C4xS3) | 192,69 | 
| C8.21(C4×S3) = C4×Dic12 | φ: C4×S3/C12 → C2 ⊆ Aut C8 | 192 |  | C8.21(C4xS3) | 192,257 | 
| C8.22(C4×S3) = D24⋊11C4 | φ: C4×S3/C12 → C2 ⊆ Aut C8 | 48 | 2 | C8.22(C4xS3) | 192,259 | 
| C8.23(C4×S3) = D12.4C8 | φ: C4×S3/C12 → C2 ⊆ Aut C8 | 96 | 2 | C8.23(C4xS3) | 192,460 | 
| C8.24(C4×S3) = C6.6D16 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 192 |  | C8.24(C4xS3) | 192,48 | 
| C8.25(C4×S3) = C6.SD32 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 192 |  | C8.25(C4xS3) | 192,49 | 
| C8.26(C4×S3) = C24.7Q8 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 96 | 4 | C8.26(C4xS3) | 192,52 | 
| C8.27(C4×S3) = C8.27(C4×S3) | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 96 |  | C8.27(C4xS3) | 192,439 | 
| C8.28(C4×S3) = C8.Dic6 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 48 | 4 | C8.28(C4xS3) | 192,46 | 
| C8.29(C4×S3) = C24.6Q8 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 48 | 4 | C8.29(C4xS3) | 192,53 | 
| C8.30(C4×S3) = (S3×C8)⋊C4 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 96 |  | C8.30(C4xS3) | 192,419 | 
| C8.31(C4×S3) = S3×C8.C4 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 48 | 4 | C8.31(C4xS3) | 192,451 | 
| C8.32(C4×S3) = C12.15C42 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 48 | 4 | C8.32(C4xS3) | 192,25 | 
| C8.33(C4×S3) = C48⋊C4 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 48 | 4 | C8.33(C4xS3) | 192,71 | 
| C8.34(C4×S3) = D6.4C42 | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 96 |  | C8.34(C4xS3) | 192,267 | 
| C8.35(C4×S3) = S3×M5(2) | φ: C4×S3/D6 → C2 ⊆ Aut C8 | 48 | 4 | C8.35(C4xS3) | 192,465 | 
| C8.36(C4×S3) = S3×C32 | central extension (φ=1) | 96 | 2 | C8.36(C4xS3) | 192,5 | 
| C8.37(C4×S3) = C96⋊C2 | central extension (φ=1) | 96 | 2 | C8.37(C4xS3) | 192,6 | 
| C8.38(C4×S3) = C4×C3⋊C16 | central extension (φ=1) | 192 |  | C8.38(C4xS3) | 192,19 | 
| C8.39(C4×S3) = C24.C8 | central extension (φ=1) | 192 |  | C8.39(C4xS3) | 192,20 | 
| C8.40(C4×S3) = Dic3×C16 | central extension (φ=1) | 192 |  | C8.40(C4xS3) | 192,59 | 
| C8.41(C4×S3) = C48⋊10C4 | central extension (φ=1) | 192 |  | C8.41(C4xS3) | 192,61 | 
| C8.42(C4×S3) = D6.C42 | central extension (φ=1) | 96 |  | C8.42(C4xS3) | 192,248 | 
| C8.43(C4×S3) = S3×C2×C16 | central extension (φ=1) | 96 |  | C8.43(C4xS3) | 192,458 | 
| C8.44(C4×S3) = C2×D6.C8 | central extension (φ=1) | 96 |  | C8.44(C4xS3) | 192,459 |