extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D4)⋊1S3 = C4×D4⋊S3 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):1S3 | 192,572 |
(C4×D4)⋊2S3 = C42.48D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):2S3 | 192,573 |
(C4×D4)⋊3S3 = C12⋊7D8 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):3S3 | 192,574 |
(C4×D4)⋊4S3 = D4.1D12 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):4S3 | 192,575 |
(C4×D4)⋊5S3 = C42.102D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):5S3 | 192,1097 |
(C4×D4)⋊6S3 = C42.104D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):6S3 | 192,1099 |
(C4×D4)⋊7S3 = C42⋊13D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 48 | | (C4xD4):7S3 | 192,1104 |
(C4×D4)⋊8S3 = C42.108D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):8S3 | 192,1105 |
(C4×D4)⋊9S3 = C42⋊14D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 48 | | (C4xD4):9S3 | 192,1106 |
(C4×D4)⋊10S3 = C42.228D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):10S3 | 192,1107 |
(C4×D4)⋊11S3 = D4×D12 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 48 | | (C4xD4):11S3 | 192,1108 |
(C4×D4)⋊12S3 = D12⋊23D4 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 48 | | (C4xD4):12S3 | 192,1109 |
(C4×D4)⋊13S3 = D12⋊24D4 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):13S3 | 192,1110 |
(C4×D4)⋊14S3 = Dic6⋊23D4 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):14S3 | 192,1111 |
(C4×D4)⋊15S3 = Dic6⋊24D4 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):15S3 | 192,1112 |
(C4×D4)⋊16S3 = D4⋊5D12 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 48 | | (C4xD4):16S3 | 192,1113 |
(C4×D4)⋊17S3 = D4⋊6D12 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):17S3 | 192,1114 |
(C4×D4)⋊18S3 = C42⋊18D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 48 | | (C4xD4):18S3 | 192,1115 |
(C4×D4)⋊19S3 = C42.229D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):19S3 | 192,1116 |
(C4×D4)⋊20S3 = C42.113D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):20S3 | 192,1117 |
(C4×D4)⋊21S3 = C42.114D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):21S3 | 192,1118 |
(C4×D4)⋊22S3 = C42⋊19D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 48 | | (C4xD4):22S3 | 192,1119 |
(C4×D4)⋊23S3 = C42.115D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):23S3 | 192,1120 |
(C4×D4)⋊24S3 = C42.116D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):24S3 | 192,1121 |
(C4×D4)⋊25S3 = C42.117D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):25S3 | 192,1122 |
(C4×D4)⋊26S3 = C42.118D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):26S3 | 192,1123 |
(C4×D4)⋊27S3 = C42.119D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4):27S3 | 192,1124 |
(C4×D4)⋊28S3 = C4×D4⋊2S3 | φ: trivial image | 96 | | (C4xD4):28S3 | 192,1095 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D4).1S3 = C12.57D8 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).1S3 | 192,93 |
(C4×D4).2S3 = C12.50D8 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).2S3 | 192,566 |
(C4×D4).3S3 = C12.38SD16 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).3S3 | 192,567 |
(C4×D4).4S3 = D4.3Dic6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).4S3 | 192,568 |
(C4×D4).5S3 = C42.47D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).5S3 | 192,570 |
(C4×D4).6S3 = C12⋊3M4(2) | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).6S3 | 192,571 |
(C4×D4).7S3 = C4×D4.S3 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).7S3 | 192,576 |
(C4×D4).8S3 = C42.51D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).8S3 | 192,577 |
(C4×D4).9S3 = D4.2D12 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).9S3 | 192,578 |
(C4×D4).10S3 = D4×Dic6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).10S3 | 192,1096 |
(C4×D4).11S3 = D4⋊5Dic6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).11S3 | 192,1098 |
(C4×D4).12S3 = C42.105D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).12S3 | 192,1100 |
(C4×D4).13S3 = C42.106D6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).13S3 | 192,1101 |
(C4×D4).14S3 = D4⋊6Dic6 | φ: S3/C3 → C2 ⊆ Out C4×D4 | 96 | | (C4xD4).14S3 | 192,1102 |
(C4×D4).15S3 = D4×C3⋊C8 | φ: trivial image | 96 | | (C4xD4).15S3 | 192,569 |